by aurovilleconsulting

Slides
204 slides

SUSTAINABLE URBAN ENERGY.pdf

Published Feb 11, 2015 in Research
Direct Link :

SUSTAINABLE URBAN ENERGY.pdf... Read more

This Source book addresses sustainable energy solutions from a system’s perspective, as a three-step process - energy conservation, energy efficiency and renewable energy. Energy conservation asks the question, “do we need to consume a given good/service?” Energy efficiency asks, “what would be the best possible way to consume the same good/service”, while renewable energy asks, “could there be sustainable renewable energy alternatives for fossil fuels”.

Read less


Comments

comments powered by Disqus

Presentation Slides & Transcript

Presentation Slides & Transcript

SUSTAINABLE URBAN ENERGYA Sourcebook for Asia

Copyright 251 United Nations Human Settlements Programme, 2012 All rights reserved United Nations Human Settlements Programme (UN-Habitat) P.O. Box 30030, Nairobi, Kenya Tel: +254 20 7621 234 Fax: +254 20 7624 266/7 Website: www.unhabitat.org DISCLAIMER The presentation of the material and designations employed in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations con- cerning the legal status of any country, territory, city or area, or of its authorities, or concerning delimitation of its frontiers or boundaries, or regarding its economic system or degree of devel - opment. The analysis, conclusions and recommendations of this publication do not necessarily reflect the views of the United Nations Human Settlements Programme or its Governing Council. Information contained in this Publication is provided without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose and non-infringement. UN-Habitat specifically does not make any warranties or representations as to the accuracy or completeness of any such data. Under no circumstances shall UN-Habitat be liable for any loss, damage, liability or expense incurred or suffered that is claimed to have resulted from the use of this Publication, including, without limitation, any fault, error, omission with respect thereto. The use of this Publication is at the user222s sole risk. Under no circumstances, including, but not limited to negligence, shall UN-Habitat or its affiliates be liable for any direct, indirect, incidental, special or consequential damages, even if UN-Habitat has been advised of the possibility of such dam-ages.

SUSTAINABLE URBAN ENERGYA Sourcebook for Asia

ACKNOWLEDGEMENTS This publication forms part of a series of documents on urban issues, for use as background ma- terials to train urban decision makers at the International Urban Training Centre (IUTC), Republic of Korea, under the overall coordination of Bernhard Barth (UN-Habitat). The work involved in preparing this publication was led by Brahmanand Mohanty, Visiting Faculty in the School of Environment, Resources and Development (SERD) at the Asian Institute of Technology (AIT). A first draft entitled 223Sustainable Urban Energy: A Sourcebook224 was prepared in collaboration with a team from BCIL Altech Foundation (Radha Eswar, Krish Murali Eswar, Shashi Kad, Chan-drasekhar Hariharan, Amit Kumar Gope and Jitendar) and submitted to the Training and Capac- ity Building Branch of UN-Habitat for review in an Expert Group Meeting held at Chuncheon, Republic of Korea, in April 2009. Based on the outcome of discussions and written comments/ feedback received, changes were made to the Sourcebook prior to its use as a reference docu- ment in a training course on Sustainable Urban Energy held at IUTC in October 2009. Taking into consideration the latest developments related to the subject and issues that are specifically relevant for urban authorities in Asian developing countries, this new version entitled 223Sustainable Urban Energy: A Sourcebook for Asia224 was prepared in collaboration with Auroville Consulting (Martin Scherfler and Vikram Devatha). A pre-final draft was used in a training at the IUTC in October 2011. The document was edited by Bernhard Barth and Fernando Cabrera. The design and layout of the document was done by Ms. Deepanjana Chakravarti.

Sustainable Urban Energy: A Sourcebook for AsiaFOREWORD by Prof. Kwi-Gon Kim Confronting the challenges of fossil fuels depletion looming large and rapid climate change, it is inevitable for cities to develop and implement urban energy management solutions for their sustainable future. This publication has been created as collaboration between International Urban Training Centre (IUTC) and UN-HABIATAT in order to provide basic principles, knowledge and diverse case studies on sustainable urban energy planning and management. The publica- tion reflects knowledge and experience gained from the last five years of training programmes operation at IUTC, and I am certain that it will provide far more than basic information but also practical and hands-on guideline for actual implementation in the cities of the Asia and Pacific Region. I hope this Sourcebook will serve to enhance the capacity and creativity for future urban energy in the Region and beyond. On behalf of IUTC, I appreciate the valuable contributions of Dr. Brahmanand Mohanty and the staff at the IUTC and UN-Habitat. Prof. Kwi-Gon Kim Emeritus Professor at Seoul National University Director, International Urban Training Center þ ( FOREWORD by Dr. Gulelat Kebede This publication forms part of a series of documents on urban issues, for use as background and training materials for local government training. The publication is the result of the collaboration between UN-Habitat and the International Urban Training Centre (IUTC), Republic of Korea. Two earlier drafts of this document were tested in 223Sustainable Urban Energy Courses224 at the centre and it is hoped that the tool will be useful for similar trainings in the future, at the IUTC as well as for local government training in the countries of the Asia and Pacific Region. The Sourcebook222s wealth of information and tools will serve training participants and urban energy practitioners alike to help them to move their cities to sustainable energy management and to improve access to affordable energy to all. The Sourcebook looks at energy from a holistic approach exploring a multitude of urban sectors that influence energy supply and demand. þ ( ( Dr. Gulelat Kebede þ ( Chief, Training and Capacity Building Branch þ ( UN-Habitat

Table of Contentsen01.Energy is all Pervasive þ 15 Introduction þ 11 en03.Good Practices þ 102 en04.Leading for Energy Sustainability227 Implementing Successful Policies þ 133 en02.Cities hold the Keys to Energy Sustainability þ 53 en2.1 From Energy Supply to End-use: Huge losses in the Conversion Chain þ 55 en2.2 From Consumption to Prosumption þ 68 en2.3 Circular Economy - Closing the Loop þ 77 en2.4 Sustainable Transport Solutions þ 83 en2.5 Integrated Urban Planning þ 89 en2.6 Emerging Technologies for Sustainable Urban Energy þ 95 en3.1 Urban Planning þ 103 en3.2 Energy Efficiency þ 104 en3.3 Renewables (City Initiatives) þ 106 en3.4 Buildings þ 112 en3.5 Transport þ 115 en3.6 Industry and Commerce þ 120 en3.7 Water þ 123 en3.8 Waste þ 125 en3.9 Awareness Campaigns and Consumer Information þ 129 en3.10 Good Governance þ 131 en4.1 Strategic Planning þ 135 en4.2 Integrated Planning þ 142 en4.3 Integrated Energy Planning þ 144 en4.4 Policy Instruments þ 150 en4.5 Urban Authorities Leading the Way þ 160 en4.6 Financing the Sustainable Development þ 164 en1.1 General Trend of Urbanization þ 16 en1.2 How are Asian Cities Growing? þ 25 en1.3 The Energy Needs of Cities þ 31

Annexes Figures 01. How to Measure Eco-efficiency þ 177 02. Example of Sustainability Indicators in Urban Water Supply þ 177 03. Urban Energy Sustainability Indicators þ 178 04. Strategic Planning Process þ 180 05. Benefits of Demand-led Approach þ 181 06. Barriers to Effectiveness of Policies þ 182 07. Computer Models that Help with Energy Planning þ 183 08. Policy Directions and Possible Actions þ 185 09. Designing the Future of Transportation in Cities þ 187 10. Impact of Policies on Sustainability and Cost þ 188 11. Information and Support þ 188 12. Strategies to Pick up from Initiatives Around the World þ 190 13. Training Activities þ 194 Figure 1.1 Tokyo222s Eco-Footprint þ 16 Figure 1.2 Metabolism of Agropolis Compared to Petropolis þ 18 Figure 1.3 Impacts of Climate Change þ 20 Figure 1.4 Proportion of Urban Population 1950-2060 (in per cent) þ 21 Figure 1.5 Urban Environmental Evolution: Developed vs. Developing Countries þ 22 Figure 1.6 Share of National Gross Domestic Product (GDP) and Population for Selected Cities þ 23 Figure 1.7 Drivers and Bottlenecks of Urbanization þ 26 Figure 1.8 The Vicious Circle of Private Motorized Transport þ 27 Figure 1.9 Urban Density and Transport Related Energy Consumption þ 28 Figure 1.10 Sources of Greenhouse Gas Emissions 2004 þ 29 Figure 1.11 Developing Asia222s Share in Global CO2 Emissions from Energy Consumption þ 29 Figure 1.12 World Primary Energy Supply 2010 þ 32 Figure 1.13 Primary Energy Supply by Source for Asia (1971 226 2020) þ 32 Figure 1.14 Annual Per Capita Electricity Consumption þ 33 Figure 1.15 Per Capita Annual CO2 Emissions from Household Energy Consumption and Trans - port of Different Income Groups þ 34 Figure 1.16 Input and Output of a Building þ 36 Figure 1.17 Life Cycle Energy Use of Buildings þ 36 Figure 1.18 Energy Consumption in Different Sectors þ 38 Figure 1.19 Projection of Energy for Buildings by Region - 2003-2030 þ 38 Figure 1.20 Urban Heat Islands þ 39 Figure 1.21 World Transport Energy Use by Mode 1971 226 2006 þ 40 Figure 1.22 Car Ownership Rates Projected; Index = 100 in 2000 þ 41 Figure 1.23 Projected Food Demand þ 44 Figure 1.24 Theoretical Potential for Cropland Expansion þ 44 Figure 1.25 Per Capita Food Losses and Waste at Consumption and Pre-consumption Stages þ 45

Figure 1.26 Water for Energy, Energy for Water þ 46 Figure 1.27 Water Uses for Main Income Groups of Countries þ 47 Figure 1.28 Water Costs in India (Monthly Costs for 500 Litres of Water per Day in INR) þ 48 Figure 1.29 Energy Consumption per Sector in Selected Asian Cities þ 49 Figure 1.30 Municipal Waste in kg/Inhabitant/Year þ 52 Figure 2.1 The Energy Conversion Chain from Supply to End-use þ 55 Figure 2.2 Example of Losses in the Energy Conversion Process þ 56 Figure 2.3 Achieving Factor 4 with Compact Fluorescent Lamps (CFLs) þ 57 Figure 2.4 Energy Pyramid - Example of CFLs þ 59 Figure 2.5 Energy Pyramid for Buildings þ 61 Figure 2.6 Bioclimatic Architecture þ 63 Figure 2.7. Water Pyramid for Buildings þ 65 Figure 2.8 Achieving Factor 4 with Low Flush Toilets þ 66 Figure 2.9 Renewable Energy Share of Global Final Energy Consumption þ 69 Figure 2.10 Use of Renewable Energy Systems around the World. Solar and Wind take the Major Share (excluding hydropower) and Total Energy Resources þ 70 Figure 2.11 Planning for RETs þ 71 Figure 2.12 A Decentralized Energy Future for Cities þ 71 Figure 2.13 Impacts and Interrelations of Sustainable Urban Food Systems þ 75 Figure 2.14 Linear versus Circular Economy þ 77 Figure 2.15 Resource Recovery in an Eco-Industrial Park þ 79 Figure 2.16 Cogeneration vs. Separate Generation þ 80 Figure 2.17 Integrated Cogeneration and District Energy Network þ 81 Figure 2.18 Triple Win from Investments in Non-Motorized Transport Road Infrastructure þ 85 Figure 2.19 Smart Mobility Planning þ 86 Figure 2.20 Fuel Efficiency per Vehicle Type þ 87 Figure 2.21 Public transport creates 25 per cent more jobs than the same investment in building þ þ r oads or highways þ 87 Figure 2.22 The Hammarby Model, Stockholm: An Example of Integrated Planning and Management þ 92 Figure 2.23 From Conventional to Regenerative Cities þ 93 Figure 2.24 Smart Grid þ 97 Figure 4.1 Requirements for Sustainable Urban Development þ 134 Figure 4.2 Long-Term Planning Framework þ 135 Figure 4.3 Integrated Energy Planning þ 146 Figure 4.4 Sustainable Urban Energy Goals, Plan and Instruments þ 148 Figure 4.5 Urban Infrastructure Financing þ 165 TablesTable 1.1 Growth of Urbanization and Gross Domestic Product (GDP) þ 24 Table 1.2 Proportion of Urban Population Living in Slums (per cent) þ 25 Table 1.3 Evolution of National Greenhouse Gas (GHG) Emissions and those þ of Selected Cities þ 30

Table 1.4 Transmission and Distribution (T&D) Losses in Selected Countries þ 35 Table 1.5 Embodied Energy of Commonly used Construction Materials (expressed in terms of kWh of energy used per kg weight) þ 37 Table 1.6 Passenger Vehicle Ownership per 1,000 Persons (1980, 2002 and 2020) þ 42 Table 1.7 Non-Revenue Water (NRW) Estimates and Values in Asia þ 48 Table 1.8 Estimated World Waste Production and Collection for 2006 þ 51 Table 1.9 Recycling in Some Developing Countries þ 51 Table 2.1 Savings by Switching from Incandescent Bulbs to CFLs þ 59 Table 2.2 Payback Rate for CFLs þ 59 Table 2.3 Savings through CFLs þ 60 Table 2.4 Annual Savings of a Green Home (Factor 4) þ 62 Table 2.5 Achieving Energy Savings in Municipal Water Supply þ 67 Table 2.6 Selected Local Renewable Energy Policies þ 73 Table 2.7 Benefits of Different Transport Objectives þ 84 Table 2.8 Smart Growth Compared with Urban Sprawl þ 91 Table 3.1 Asian Green City Index Overall Results þ 130 Table 4.1 Steps of a Long-Term Planning Framework þ 136 Table 4.2 Stakeholder Matrix þ 137 Table 4.3 Process of Integrated Planning Approach, Example of Eco-City Dongtan, China þ 142 Table 4.4 Overview of Instruments for Environmental Integration þ 143 Table 4.5 Integrated Energy Plan þ 149 Table 4.6 Various Instruments that Policymakers can Adopt for Achieving Policy Goals þ 150 Table 4.7 Economic Instruments for National and City Governments þ 152 Table 4.8 Selected Regulatory Instruments for Different Sectors þ 154 Table 4.9 Relevant Policies 226 Case Study þ 155 Table 4.10 Policy Options for the Transport Sector þ 156 Table 4.11 Jobs from the Renewable Energy Sector þ 159 BoxesBox 1.1 Ecological Footprint þ 17 Box 1.2 The Stern Review in Brief þ 19 Box 1.3 UN Millennium Development Goal for Slum Reduction þ 26 Box 1.4 Environmental Impact on a City222s Economy þ 30 Box 1.5 Market Distortions through Fossil Fuel Subsidies þ 34 Box 1.6 Reducing Energy Consumption in Buildings þ 39 Box 1.7 Greenhouse Gas (GHG) Savings from Non-Motorized Transport þ 42 Box 1.8 The Story of a Toothpick þ 43 Box 1.9 Urban Agriculture, a Quiet Revolution þ 45 Box 1.10 Promote Clusters of Green Industries and Green Jobs þ 50 Box 2.1 What is Sustainable Development? þ 54 Box 2.2 From Megawatts to Negawatts þ 56 Box 2.3 Environmental Problems Associated with Compact Fluorescent Lamps (CFLs) þ 58 Box 2.4 Gains of Phasing out Incandescent Bulbs þ 60

Box 2.5 Green Roofs and Energy Efficiency þ 63 Box 2.6 Municipal Level Programmes to Reduce Water Demand þ 67 Box 2.7 Feed-in Tariffs þ 72 Box 2.8 Voluntary Actions of Cities þ 72 Box 2.9 Community Supported Agriculture (CSA) þ 76 Box 2.10 Principles of Circular Economy þ 78 Box 2.11 Eco-Effectiveness þ 80 Box 2.12 Cogeneration and District Cooling Network for Bangkok Airport þ 82 Box 2.13 Urban Water Ways as Sustainable Transport Modes þ 88 Box 2.14 The 2000-Watt Society þ 94 Box 4.1 The Way Cities should be þ 138 Box 4.2 Eco-Budget as Monitoring Tool þ 141 Box 4.3 Economic Instruments þ 151 Box 4.4 Voluntary Agreements þ 157 Box 4.5 Promoting Sustainable Lifestyles þ 158 Box 4.6 Special Purpose Vehicles þ 164

11Introduction223One point is certain. 037e centre of gravity of global energy demand growth now lies in the developing world, especially in China and India. But uncer- tainties abound.224 - Nobuo Tanaka, Executive Director, International Energy AgencyCities are engines of economic growth. On an average they are responsible for more than 75 per cent of a country222s Gross Domestic Product (GDP). The world222s total population is close to 7 billion today, with half living in urban centres, and expected to increase to 68 per cent by 2050 (Doman 2009). Asian cities will double in size over the next 20 years, adding more than 40 million each year. Hence the 21st century will undoubtedly be the century of urban development for Asia. The challenge for Asia will be to provide the basic amenities such as food, water and shelter, transportation, education and sanitation for its urban and rural population, without disturbing the ecological balance. Cities are voracious resource consumers, and as cities grow, their consumption also follows suit, absorbing more resources and increasing the ecological footprint. Cities need an uninterrupted supply of energy to fuel their activities, and this is currently being met predominantly by fossil fuels. However, fossils fuels are finite; their availability is under question, with harmful effects on the environment. The way forward is likely to be an alternative development model that is not carbon intensive, one that is economically and socially inclusive, and focuses on the well-being of the population. A systematic understanding of today222s energy consumption and production systems will provide us with some insights on how to achieve this. Various initiatives in Asia and around the world can be replicated, adapted and scaled up by municipal authorities. This Sourcebook addresses sustainable energy solutions from a system222s perspec- tive, as a three-step process - energy conservation, energy efficiency and renewable energy. Energy conservation asks the question, 223do we need to consume a given good/service?224 Energy efficiency asks, 223what would be the best possible way to consume the same good/service224, while renewable energy asks, 223could there be sustainable renewable energy alternatives for fossil fuels224. Figure 0.1 illustrates the potential for a more sustainable future by taking an ex- ample of a light bulb during the day. We first ask the question, whether additional light is needed during the day, as opposed to whether we want it. If needed, then we could perhaps move into a better-lit room or even open the curtains to let in more light? If a light bulb is required, then could we use Compact Fluorescent

12Lamps (CFLs) or Light Emitting Diodes (LEDs) that are more energy efficient? And can the energy for this come from a renewable source? In order to exert less pressure on energy production, cities need to cut down on consumption and make behavioural changes. An intervention that reduces energy use even by a small amount at the individual level, can translate into large reduc-tions in the amount of energy that needs to be produced.Figure 0.1 Energy Pyramid This diagram illustrates how energy usage can be lowered using a three-step process Renewable Energy Fossil FuelDo we need it? For eg. light during the day Using natural light instead of artificial light Using CFLs or LEDs instead ofincandescent light Using renewable energy What is the least energy consuming design? What is the most efficient technology for it? What is the most sustainable production? What is the last option? Use fossil fuel as final resource onlyThere are many low hanging fruits such as these that local authorities can use to conserve energy independently, without having to refer to national authorities. If they take advantage of this, the primary goal of having well-planned, well-man-aged and well-governed cities using sustainable urban energy will become a more tangible reality. What are the Objectives of this Sourcebook?This Sourcebook focuses primarily on Asian cities, and hopes to - Illustrate the challenges of meeting the required energy demand and providing access to affordable energy to all. - Present a concept of more sustainable energy management in the Asian urban context.

13- Analyse the linkages between various sectors and subsectors in a systematic way and address the need for a more holistic approach in energy issues. - Present existing and future solutions for a more sustainably integrated develop- ment of urban areas and to learn from initiatives from around the world - Provide a tool kit for policy makers, planners and local authorities who aim at making their cities carbon-frugal or carbon-neutral. In light of global warming and other environmental threats, local Governments around the world have taken up initiatives in mitigation and adaptation to climate change. This sourcebook serves as an informative document that can help local leaders such as mayors, councillors and even task managers to take stock of the situation, analyse wastage, and look for innovative solutions to reduce energy demand and to implement more sustainable energy systems. The book may also serve as a guidebook for National Governments as well as Non-Governmental Organisations (NGOs). Contents of the SourcebookThe sourcebook is divided into 4 chapters. Chapter 1 focuses on current trends of urban development in Asia and around the world. Chapter 2 explores options for cities to become more energy sustainable through the use of existing technologies and energy conservation methods. Chapter 3 presents best practices for develop-ing more sustainable cities, while Chapter 4 shares basic policy instruments for local authorities in attaining a carbon neutral city. Key considerations that have enabled the creation of this sourcebook are as follows:Holistic ApproachThis sourcebook focuses on energy issues in urban areas; however, since this has implications on many non-energy sectors such as water, waste, governance, man-agement and planning, these issues are addressed as well. Energy is closely linked with all basic services that urban dwellers need. Hence, an integrated approach is the key to energy management.Focus on Small to Medium Sized CitiesLarge cities dominate discussions on growth, but they are strangled by problems relating to urbanization, with little or no room for mitigation. Growth patterns suggest that most future development will take place in Asia222s small- and middle-size cities. Unlike Megacities, these cities often have a limited stock of infrastruc - ture in place. Whilst these cities face significant challenges, not being locked into past investment and planning decisions provides opportunities for sustainable development. The Sourcebook defines small cities as those having a population of

14less than one million; and medium-sized cities as those with a population of one to two million. Most of the growth in population and GDP will occur in so-called middle-weight cities, many of which are in Asia (McKinsey Global Institute 2011). These cities presently lack the necessary knowledge, institutional, financial and political capital for such transformation to take place in a sustainable way. Context and Heterogeneity of the ContinentThe 223one-size-fits-all224 approach may not work for a continent as diverse as Asia. Geographically and politically as well, the situation of one Asian country differs drastically from its neighbour. Solutions that will work for a particular geographic location, under a specific style of governance are not applicable to other locations. While examples are cited from around Asia and the world, the idea is to make them as relevant to leaders of Asian countries as possible.Focus on Immediate ActionThe sourcebook emphasizes that the time to act is now in order to avert cata-strophic global climate change.Emphasis on Local SolutionsFinding solutions at the local level in small and medium-sized cities is the main focus, with mayors, councillors and task managers at the centre of the source-book. All discussions keep local leaders in mind. Although it is understandable that certain policies trickle down from central policies, and very often local authorities follow national or regional action plans, the emphasis is on proactive and indepen-dent decision-making by local leaders. Whether it is mobilizing communities at the micro level or making policies and regulations, local leadership plays a crucial role in bringing about this change.

15Energy is all Pervasive223 If everyone consumed as much energy as the average Singaporean and U.S. resident, the world222s oil reserves would be depleted in 9 years.224 - WWF Energy Report 2050For nearly everything we produce or consume we require energy. Energy is all pervasive, human life is build upon resources that have embodied energy. Energy is not only required to produce electricity of to fuel a vehicle all essentials of our life depend on energy input, water needs energy for pumping and supply, waste has embodied energy and needs energy for it222s disposal, housing and infrastructure take up vast amount of energy resources. Cities exert a particularly high demand of energy. A big percentage of this increasing energy demand is covered by fossil fuels, a resource that is getting more and more scare, increasing in price and that is a large contributor to global warming. The fossil fuel depended urbanization is still expanding all over the world even though the resource of fossil fuel is being fast depleted. Facing this facts energy security presents itself as one of the keys for the development of Asia222s cities. 01.Energy is all Pervasive 01.

16 Sustainable Urban Energy: A Sourcebook for Asia General Trend of Urbanization1.1223Urbanization and economic growth typically happen in tandem; however, equitable distribution of bene036ts and opportunities remains a challenge.224 - (UN Habitat 2011)Cities occupy less than 3 per cent of the land surface, and yet house half of the world222s population. They use 75 per cent of the available resources, and account for about 67 per cent of all greenhouse gas emissions (World Energy Outlook, 2008). The energy and materials that are consumed by cities must be disposed in some form, and they do so in vast quantities of solid, liquid and gaseous waste. In other words, cities are dis-sipative structures of intense energy and material consumption as well as waste production. Goods and services needed within a city are generally produced outside the city, and often in other countries. Urban centres thus rely on the supply of natural resources from around the planet, with the associated environmental impact. Tokyo for example, has an eco-footprint, which is 344 times larger than its region, and 4.3 times the area of Japan (Figure 1.1).In a world where all inhabit- ants share their resources equally, the per capita sustain- able footprint would be 1.8 Hectares. 037e average foot- print of the Asian giant China is 1.6, while that of Shanghai is already at 7.0. (ADB, 2008)Figure 1.1 Tokyo222s Eco-Footprint Adapted from: Rees, 2010 Eco-Footprint Japan222s capacity

17 Sustainable Urban Energy: A Sourcebook for Asia 20th Century Agropolis to Petrop- olisIn the past, cities based their operations on an elaborate eco- nomic and ecological system to meet their sustenance. In the absence of major transport systems, the hinterland supplied the city with its needs of food and other goods, and the city assured the continuous productivity of the hinterland by return-ing appropriate amounts of organic waste that could be used for fertilizing the cropland. 223This type of traditional settlement system is called Agropolis. Until very recently, many Asian cities were still largely self-sufficient in food as well as fertilizer, using human and animal wastes to sustain the fertility of local farms224 (World Future Council, 2010). With the industrial revolution, this symbiotic relation between a city and its hinterland was replaced. Faster modes of transport made the supply of food and raw materials easier to handle. Cities became economic trade centres with access to global re-sources. Such a system has been described as 221Petropolis222 since all key functions 226 production, consumption and transport 226 are powered by massive injections of petroleum and other fossil fuels. But there is ever growing evidence that the resulting dependencies are ecologically, economically and geopolitically untenable, particularly because the fossil fuel supplies on which modern cities depend are finite (World Future Council, 2010). The future of the planet depends on how cities deal with the demand for energy, as well as their demand for ecological resources. This chapter addresses current growth trends, the importance of energy in urban centres and the challenges that developing countries in Asia face to provide (continuous) ener - gy to millions of people, keeping the local/global environment in mind, as well as the need to draw millions out of poverty. 223The Ecological Footprint has emerged as the world222s premier measure of humanity222s demand on nature. It measures how much land and water area a human population requires to produce the resource it con-sumes and to absorb its carbon dioxide emissions, using prevailing technology. It now takes the Earth one year and six months to regenerate what we use in a year. We maintain this overshoot by liquidating the Earth222s resources.224Box 1.1 Ecological Footprint Source: www.footprintnetwork.org037e paradigm for a city222s sustained economic growth should focus on developing competitive industrial clusters,on fostering rural-urban linkages, on improving pro-ductivity and conditions in the informal sector, and on infrastructure development. (ADB, 2008)

18 Sustainable Urban Energy: A Sourcebook for AsiaFigure 1.2 Metabolism of Agropolis Compared to Petropolis Adapted from: World Future Council, 2010 Market Gardening & Milk Production Navigable River Navigable River Firewood & Lumber Production Livestock Farming Crop Farmingwithout fallow Air imports/ exports Road imports/ exports Rail imports/exports Sea imports/exports Global communications Oil imports Food imports Motorway links Crop Farming fallow & pasture Town Three-field system Central City Agropolis Petropolis Cost of Climate ChangeThe large usage of fossil fuels and greenhouse gas emissions has contributed to Climate Change. The costs of adapting to this will be colossal: a recent report suggests that by 2030, the world may need to spend more than 037USD 200 billion a year on measures such as building flood defences, transport-ing water for agriculture and rebuilding infrastructure affected

19 Sustainable Urban Energy: A Sourcebook for Asiaby climate change (IIED, 2009). Costal cities and island states will be particularly affected, with those in the Least Developed Countries being particularly vulnerable. Only 2 per cent of the world222s land is in the Low Elevation Coastal Zone (LECZ) 226 the area adjacent to the coast that is less than ten metres above mean sea level 226 but this zone is home to 10 per cent of the world222s population, 60 per cent of whom live in urban areas (IIED, 2009). Large areas of cities may become uninhabitable as a result of flooding or water-logging, or may be agriculturally unusable due to salt erosion. As well as damage to infrastruc-ture, many areas could be rendered completely uninhabitable as a result of inundation (IIED, 2009). In cities where rainfall is low, drought is the issue that is most likely to be accentuated by climate change. The effects of drought are widespread but are focused in particular on drink-ing water shortages and increased food prices (IIED, 2009). The global consensus is that 1.2 billion people could experience freshwater scarcity by 2020; crop yields in Central and South Asia could drop by 50 per cent between now and 2050; and coastal community ecosystems, and even entire island nations could vanish (ADB, 2007). To effectively address mitigation, all three areas227energy, fugitive emissions, and land use227must be addressed (ADB, 2007). - Climate change will have a serious impact on the environment, human life and world output. All the countries will be affected. - To stabilise greenhouse gas levels in the atmosphere, annual emissions need to be cut by more than 80 per cent. - Climate change could cost the equivalent of 5 per cent of global GDP per year. The worst case scenario could be 20 per cent. - The cost of action could be limited to about 1 per cent of global GDP per year. - Action on climate change will create new business opportunities in low-carbon energy technologies and low-carbon goods and services. - Tackling climate change can be done in a way that will not stop growth in rich and poor nations.- Developing countries must also take significant action 226 but should not have to bear the costs alone. - Emissions can be cut through increased energy efficiency, reduced demand, and by adopting clean fuel technologies. Government policies must encourage these. - The response must be coordinated, long term and international, and include measures such as emissions trading, technology cooperation and reduced deforestation. Source: Stern, 2006037e future battle against climate change is likely to be largely won or lost in Asian cities, which are expected to contribute over half the incre- ment in GHGs over the next 20 years. (ADB 2008)

20 Sustainable Urban Energy: A Sourcebook for AsiaFigure 1.3 Impacts of Climate Change Adapted from: IPCC, 2007 Impacts continuing with increasing temperature Impacts relating to specific temperature Temperature change (relative to pre-industrial era) 0 o C 1 o C 2 o C 3 o C 4 o C 5 o C Water Eco-systems FoodCoastHealthDecreasing water availability and increasing drought Up to 30% of species risk extinction Most coralsbleached Productivity of some cereals decrease in low altitudes 0.76o C 2001-2005 average Extensive extinctionsaround the globe Hundreds of millions of people exposed to increased water stress Widespread coral mortality Negative, local impacts on subsistence farming and fishing Increased damage from floods and storms Increase in malnutrition, diarrhea, cardiorespiratory and infectious diseases Increased mortality from heat waves, floods and droughts Coastal flooding affecting millions of people Productivity of all cerealsdecrease in low latitudes

21 Sustainable Urban Energy: A Sourcebook for AsiaToday, more than half of the planet222s population lives in cities. It is expected that by 2050 another 3 billion people will be living in urban areas, or about 68 per cent of the global population. Most Asian countries still have a relatively low level of urbaniza-tion: 30 per cent in India, 44 per cent in China and 47 per cent in Indonesia. The average rate of urbanization in Europe is 73 per cent and even higher: 80 per cent for the United Kingdom, 85 per cent for France and in the United States, it is 82 per cent. Population Growth and Urbanization 80 6040 20 100 Europe North America Asia World Africa Latin America1950 1970 1990 2010 2030 2050 Adapted from: United Nations, Department of Economic and Social Affairs Database, accessed July 2011 Urban Evolution: Developed vs. Developing CountriesAccording to the World Bank (1992) we can identify three levels of environmental problems in urban areas, each of which corresponds to different levels of economic development:- Poverty related issues such as slums, inadequate infrastructure etc.; - Industrial pollution related issues such as air, water and soil pollution; - Mass production and consumption related issues such as large-scale pollution, solid waste, etc.

22 Sustainable Urban Energy: A Sourcebook for AsiaBai and Imura (2001) developed a hypothesis that cities develop through these three stages (viz. poverty stage, industrial pol-lution stage, consumption and mass production stage) before approaching the sustainable city stage. However this model explains how industrialized cities have evolved. For developing countries the picture presented is quite different. In fact, we are witnessing a synchronicity of all phases - while poverty is ram-pant and the per capita energy consumption is low, there is a massive growth in production, which mostly caters the industri-alized world (Figure 1.5). The urban rich are adopting lifestyles that are comparable to those of the developed countries. Even though Asia222s ecological footprint is still relatively low, there is need for serious retrospection on whether it is wise to continue with development and lifestyles that are unsustainable. 1. 2. 3. Sequence followed by developed countries Sequence followed by Asia and the Pacific Industrialization Industrialization Mass production& consumption Mass production& consumption- High rural-urban migration - Low per-capita income - low infrastructure investment slums & squatter settlements, inadequate access to infrastruc- ture & services - High rural-urban migration - Low per-capita income - low infrastructure investment slums & squatter settlements, inadequate access to infrastruc- ture & services - Economic growth prioritized over environ-mental management air, water & soilpollution - Economic growthprioritized over environ-mental management air, water & soilpollution - Prosperous lifestyle based on mass production, consumption & disposal large scale pollution & waste - Prosperous lifestyle based on mass production, consumption & disposal large scale pollution & waste Adapted from: Bai and Imura, 2000

23 Sustainable Urban Energy: A Sourcebook for AsiaCities are centres of cultural, human and economic capital. This is an important pull factor for people to migrate to cities. The correlation between economic growth and urbanization has been long known. 223No country has ever achieved sustained economic growth and rapid social development without urbanizing224 (UN Habitat, 2011). According to the McKinsey Global Institute (2011), today there are 600 urban centres that generate about 60 per cent of the global Gross Domestic Product (GDP). To take an extreme example, the city of Seoul contributes close to 50 per cent of Republic of Korea222s GDP while having a population of about 24 per cent of the country222s total. Figure 1.6 illustrates this. Glob-ally cities consume 67 per cent of all energy and account for 71 per cent of all greenhouse gas emissions. Economic Growth and Urbanization Adapted from: UN Habitat, 2008Share of GDP Share of population Seoul Budapest Brussels Lisbon Paris Mexico City Sydney Johannesburg Cape Town New York Shanghai Mumbai New Delhi Beijing Guangzhou Bangalore 0 5 10 15 20 25 30 35 40 45 50 City Share of country222s total

24 Sustainable Urban Energy: A Sourcebook for AsiaThey need vast amounts of water and energy for transpor - tation, infrastructure, housing, food supply, etc. Obviously there is a nexus between urbanization, economic growth and increase of carbon emissions. GDP and urban development are intrinsically linked to each other. Nations with a high GDP per capita also rank high regarding the proportion of their urban population. Table 1.1 shows that high income level countries have a much higher percentage urban population than middle or low income coun-tries. 28,755 2,011 415 784832GDP per capita Urban Population High incomeMiddle incomeLow income (Constant 2000 USD) (% of total) Adapted from: UN Habitat, 2011aIn both India and China, the 036ve largest cities contributed approximately 15 per cent of national GDP in 2004 226 roughly three times what could have been expected based solely on their relative shares of the population. (UN Habitat, 2011a)

25 Sustainable Urban Energy: A Sourcebook for Asia How are Asian Cities Growing?1.2223Evidence shows that the transition from low-income to middle-income country status is almost always accompanied by a transition from a rural to an urban economy.224 - Commission on Growth and Development, 2009The scale of urbanization in Asia is striking and difficult to visualize 226 on average, around 120,000 people are added to city populations every day. This implies that 223205 each day, the construction of more than 20,000 new dwellings, 250 kilome-tres of new roads and additional infrastructure to supply more than 6 million litres of potable water is required224 (ADB, 2006). It is not surprising that nearly a third of all urban dwellers live in slums today. Like elsewhere, the expansion of cities in Asia has often been characterized by unplanned and informal settlements. Poverty and slums have been closely associated with urban growth. A large proportion of Asia222s urban population suffers from food deprivation, low income, premature mortality, lack of access to services and poor quality of housing (UN Habitat, 2011). In 2010 about 30 per cent of Asia222s population lived in slums. Even though significant progress has been made and the per - centage of people living in slums is falling, the total number of slum dwellers is still on the rise (Table 1.2).43.7 57.249.522.5 37.445.839.620.6 28.2353124.6 1990 Regions 2000 2010 Eastern AsiaSouthern AsiaSouth Eastern AsiaWestern Asia Adapted from: UN Habitat, 2011Urbanization is driven by migration from rural areas as well as by population increase. Immigration from rural areas triggered by the surge for employment and a better life will account for 037e population of slum dwellers around the world continues to grow by around 10 per cent every year, inten-sifying the problem world-wide. (UN Habitat, 2011a)

26 Sustainable Urban Energy: A Sourcebook for Asia Box 1.3 UN Millennium Goal for Slum Reduction Adapted from: WWF, 2010 Source: ww2.unhabitat.org/mdg/With urbanization, as land prices increase in the heart of the city due to economic development, the city starts to expand horizontally. Urban sprawl is very energy inefficient, as it leads to 223more travel, more fuel consumption, more air pollution, and also to inefficiencies in infrastructure and service provision224 (Sierra Club, 2009). Also, as a result of sprawl, modern cities are planned according to the dimensions of cars with broad highways and flyovers. This creates a vicious circle - it boosts traffic, increases distances people drive and reduces the attrac-tion of walking and bicycle transport (Figure 1.8). The United Nations system assigned UN-Habitat the responsibility of assisting Member States to monitor and gradually attain the 223Cities Without Slums224 target, also known as Target 11, which is one of the three targets of Goal 7, 223Ensure Environmental Sustainability224. Target 11 aims: 223by 2020, to have achieved a significant improvement in the lives of at least 100 million slum dwellers224. Urban Planning and Sprawl Education & aspiration Growth of agricultural productivity Government policy & vision Growth of non farm activity Shift from Subsistence agriculture to other activities BOTTLENECKS Poor civicinfrastructure Governance & government policy Planning bias towards metros Decay of small cities Slow industrializationa big part of this. Most of this growth will be concentrated in informal settlements and slum areas.

27 Sustainable Urban Energy: A Sourcebook for AsiaCities with sprawl development end up consuming more en- ergy than cities that have allowed denser growth around city centres (Figure 1.9). It is estimated that sprawl development uses five times more pipe and wire, five times more energy for heating and cooling, twice as many building materials, three times more automobiles, and causes four times more driving. It also consumes 35 times as much land, and requires 15 times as much pavement as compact urban living (Sierra Club, 2009). As an example, the daily residential energy need for Hong Kong, one of the densest cities in the world, is just 20 Mega Joules (MJ) per capita as compared to the average consump-tion of 70 MJ/capita in OECD countries. The energy needed for Hong Kong222s transport is just 8 MJ/capita compared to Hous-ton222s 75 MJ/capita (UN HABITAT, 2006). Hong Kong achieved this because authorities allowed high-rises for both residential and commercial use. Car traffic Land Use for roads Emissions, noise, accidents Traffic increase Increased distances- Within residential areas- To workplace - To leisure areas= Need for more transport Reduced attraction for pedestrian & bicycle traffic and reduced access to public transport Shift from pedestrian to car More trafficSuburbanization and urban sprawl are happening in dif- ferent places throughout the world, spreading low-density urban patterns and negative environmental, economic and social externalities. (UN Habitat, 2011a)Adapted from: GTZ, 2004

28 Sustainable Urban Energy: A Sourcebook for Asia Environmental Implications of Urban GrowthAgriculture and Forestry have been found to be responsible for around 30 per cent of greenhouse gas emissions. Urban areas shape this in two major ways. First, urbanization can involve di-rect changes in land-use, as formerly agricultural land becomes built-up areas. Indeed, global urban trends towards suburban-ization mean that cities are continuing to sprawl and encroach on land that was previously used for agriculture, thereby reduc-ing its potential to absorb CO 2 . For instance, carbon dioxide released from land use change in Indonesia accounts for more Transport-related energy consumption (Gigajoules per capita per year) Urban density (Inhabitants per hectare) North American cities Australian citiesEuropean citiesAsian cities 50 100 150 200 250 300 80 70605040302010 0Houston Phoenix Detroit Denver Los Angeles San Francisco Boston Washington Chicago New York Toronto Perth Brisbane Hamburg Stockholm Frankfurt Zurich Paris Copenhagen Amsterdam Melbourne Sydney Munich West Berlin Vienna Tokyo Singapore Hong Kong Moscow Brussels LondonFigure 1.9 Urban Density and Transport Related Energy Consumption Adapted from: Kirby, 2008

29 Sustainable Urban Energy: A Sourcebook for AsiaIf current trends continue, the greenhouse gas emissions in the Asia-Pacific region will soon be comparable to those of Europe and North America. Emissions from energy use alone are pro-jected to be 127 per cent higher in 2030 than they are today, with the region being responsible for 42 per cent of all global energy-related emissions (ADB, 2007). than three quarters of the country222s total greenhouse gas (GHG) emissions. Second, to meet the consumption needs of wealthy urbanites, city-based enterprises, households and institutions place sig-nificant demands on forests, farmlands and watersheds outside urban boundaries (UN Habitat, 2011). Forestry Waste & wastewater Energy supply Transport Residential & commercial buildings Agriculture Industry17.4% 2.8% 25.9% 13.1% 7.9% 13.5% 19.4%Figure 1.10 Sources of Greenhouse Gas Emissions 2004 2 Emissions from Energy Consumption Adapted from: Vattenfall, 2009 Adapted from: IEA,2007 2030 Rest of the world Developing Asia29% 71% 42% 58%2005 2030(Actual) (Projection)

30 Sustainable Urban Energy: A Sourcebook for Asia According to a 2006 survey by the American Chamber of Commerce in Hong Kong, almost four out of five professionals based in Hong Kong were thinking of leaving, or knew others who had already left, because of the quality of the environment. Ninety five per cent of respondents were worried about the air quality in Hong Kong and the potential long-term effects on the health of themselves and their children. In addition, 55 per cent of respondents knew of professionals who had declined to move to Hong Kong because of the quality of its natural environment. The same survey showed that 223quality of the natural environment224 topped a list of seven factors in terms of importance when selecting a place to live: 94 per cent ranked it as either the most important or the second most important factor. The Hong Kong example shows that if the environment were cleaner and the air quality better, companies would invest more money in the city. A healthy environment is vital to attract and keep capital investment. 19.7 (2005) 8.4 (2004) 8.2 (2001) 8.1 (1998) 7.1 (2005) 6.9 (1998) 6.2 (2006) 4.8 (1998) 3.8 (1998) 3.4 (1996) 2.3 (1998) 1.5 (2003) 23.9 (2004) 11.2 (2004) 23.7 (2004) 3.4 (1994) 23.9 (2004) 3.4 (1994) 11.2 (2004) 10.6 (2004) 6.7 (1990) 10.0 (2004) 8.2 (1994) 8.2 (1994) City City GHG emissions per capita National emissions per capita(Tonnes of CO 2 eq) (Tonnes of CO 2 eq) (Year of study in brackets) (Year of study in brackets) Adapted from: Dohan, 2009 Source: American Chamber of Commerce, 2006The costs of adapting to climate change will be colossal: a recent report suggests that by 2030, the world may need to spend more than 037200 billion a year on measures such as build-ing flood defences, transporting water for agriculture and re-building infrastructure affected by climate change (IIED, 2009). Coastal cities and island states will be particularly affected, with those in the Least Developed Countries being particularly vulnerable. Large areas of cities may become uninhabitable as a result of flooding or water-logging, or may be agriculturally unusable due to salt erosion (IIED, 2009).

31 Sustainable Urban Energy: A Sourcebook for Asia 037e Energy Needs of Cities1.3223Cities all over the world are getting bigger as more and more people move from rural to urban sites, but that has created enormous problems with respect to environmental pollution and the general quality of life.224 226Alan Dundes, Former Professor of Anthropology, University of California (2002)Some of the key environmental and social challenges associ- ated with urban development are un-proportionally high energy consumption, a high level of greenhouse gas emissions, a vast ecological footprint, high resource consumption (water, food) and large infrastructure costs aggravated by urban sprawl, the growth of slums and the lack of livelihood opportunities. Asia especially is witnessing a rapid urbanization and a fast rise in the above mentioned consequences. This is a tremendous chal-lenge for Asia222s governments, which are often not equipped with tools to respond to this fast-paced development. High Dependency on Fossil FuelsAccording to the forecast of the International Energy Agency (2006), the world will need almost 60 per cent more energy in 2030 than in 2002 to meet its demand. Most of this demand increase will come from non-OECD countries. Under the current business as-usual scenario, energy use in Asia will increase 112 per cent by 2030. China222s energy consumption is one of the fastest growing with an annual increase of 11.2 per cent, and it has surpassed the US as the world222s largest energy consumer (BP, 2011). Today, fossil fuels supply over 80 per cent of pri- mary energy globally. But as we know they are finite resources that will be depleted in the near future. Asian cities are on the path of economic growth as well as a fast population growth, both of which will increase the demand for energy and resourc-es. Most of Asia222s growth today is fuelled by fossil energies such as coal, oil and gas. Import dependency and soaring prices of fossil fuels are threatening the emergent growth of Asia222s cities. Fossil fuels in China, India, Indonesia, the Philippines, 037ailand and Vietnam provide more than 75 per cent of total 036nal energy con- sumption. (UNESCAP, 2008)

32 Sustainable Urban Energy: A Sourcebook for Asia Other Renewables Oil Coal Gas Biomass Hydro Nuclear1% 35% 29% 23% 4% 2% 6%Figure 1.12 World Primary Energy Supply 2010 Adapted from: OECD, 2010 Adapted from: Institute for Energy Economics, 2006 1970 1980 1990 2000 2010 202060 50 40 30 20 10 0 Coal OilNatural Gas NuclearHydro % of total

33 Sustainable Urban Energy: A Sourcebook for Asia Intrinsic Link between Urban Life and ElectricityElectricity is pivotal for modern lifestyles. It runs our industries and fuels our homes. With demographic expansion and eco-nomic growth the demand for electricity has been growing as well. According to IEA estimates, the world222s average annual electricity consumption per capita for 2007 was 2,752 kWh, and for 2030 it will be about 4,128 kWh. In 2007, the per cap-ita electricity consumption in OECD countries was about three times higher than the world average and it is expected to con-tinue this way till 2030. In order to supply this growing demand for electricity, developing countries are expected to increase capacity by installing new power plants. However one-fifth of the world222s population does not have access to reliable electric-ity. In developing Asia the number of people lacking access to electricity was 799 million in 2009. In India alone 100,000 villages are yet to have access to electricity, and over 44 million households do not have access to energy (GWEC, 2010). Cities are the biggest consumers of the supplied electricity. In India for example, the one-third of the population that live in cities consume 87 per cent of the nation222s electricity (Starke, 2007). Also, there are stark variations in the consumption rates between different income groups. In India, the higher income groups have around 4 times the per capita CO2 emissions from household energy consumption and transport than the lowest income group (Figure 1.15). 10000 8000 600040002000 0 India World OECD China2007 2007 2007 2007 2030 2030 2030 2030Figure 1.14 Annual Per Capita Electricity Consumption Adapted from: IEA, 2009While the average worldwide losses in transmission and distribution are in the range of 10 per cent, in some devel-oping countries non-technical losses could reach up to 50 per cent of the total electricity transmitted over the network. (WEC, 2001)

34 Sustainable Urban Energy: A Sourcebook for AsiaRegular power cuts, resulting from load shedding when the de- mand is higher than supply, are common in many Asian coun-tries. This problem is likely to get worse since economic growth leads to increased demand for electricity. In Asia adding new capacity is the most widely used answer, but this takes time and is costly as well. There are other options that are often less capital intensive and could be considered. These include behav-ioural and lifestyle changes, smart appliances, co-generation and reducing the losses in the distribution network (technical and non-technical ones). Fossil-fuel subsidies result in an economically inefficient allocation of resources and market distortions, while often failing to meet their intended objectives. Subsidies that artificially lower energy prices encour - age wasteful consumption, exacerbate energy-price volatility by blurring market signals, incentivize fuel adulteration and smuggling, and undermine the competitiveness of renewables and more efficient energy technologies. For importing countries, subsidies often impose a significant fiscal burden on state budgets, while for producers they quicken the depletion of resources and can thereby reduce export earnings over the long term. 1000 1200 14001600 800 600400 200 0 Kg of CO 2 Monthly income class >3K 3-5K 5-8K 8-10K 10-15K 15-30K 30K+ AllFigure 1.15 Per Capita Annual CO 2 Emissions from Household Energy Consumption and Transport of Different Income Groups Box 1.5 Market Distortions through Fossil Fuel Subsidies Adapted from: Greenpeace, 2007 Source: OECD, 2010

35 Sustainable Urban Energy: A Sourcebook for AsiaDistribution losses are especially high in Asia. The World Bank reports that for Pakistan, 223reducing electricity transmission and distribution losses are more cost-effective measures for reduc-ing the demand-supply imbalances than adding generation capacity224. The same will apply to many other Asian countries (World Bank, 2006). Country Country T&D losses% T&D losses%Japan Denmark Germany Ghana Singapore Guam Macau ROK* France AustraliaCanada China South Africa 4.04.0 4.0 4.0 4.0 4.50 4.81 5.4 5.9 6.06.0 6.0 6.0 SwitzerlandSweden United States United Kingdom Taiwan Italy London Malaysia Thailand FijiIndonesia Mexico Hong Kong 6.06.4 7.0 7.0 7.0 7.4 8.3 10.0 10.3 10.5212.0 14.0 15.0 *Republic of KoreaAdapted from: World Bank, 1997 Energy for the Built EnvironmentBuildings consume large amounts of raw materials, energy and water and at the same time produce immense quantities of waste and pollution. The way we build is shaped by geography, cultural values and by the availability of raw material. Buildings usually have a long life span, hence their effect on people and the environment is long and continuing. This makes the build-ing sector a particular issue in terms of sustainability. Energy is used through out the lifecycle of a building. First, the construction material that is used has embodied energy, since energy is needed for the extraction and manufacture of raw materials. Second, energy is used in the construction phase of the project as. all the drilling machines, pumps, tractors, etc, In countries like India and China, where expansion of the middle class and urban- ization is occurring rapidly, the emissions and energy use of buildings are projected to increase dramatically. (UNEP, 2008)

36 Sustainable Urban Energy: A Sourcebook for AsiaAccording to the IPCC (2007) report, buildings have the largest potential of any sector for reducing greenhouse gas emissions, estimated at 29 per cent by 2030. Hence, it is vital that build-ing design and construction methods are re-evaluated. need energy for their operation. Thirdly, energy is needed for the usage and maintenance of the building (viz. lighting, air conditioning, cleaning) and lastly energy is needed for demol-ishing the building and for removing the debris. - Energy - Raw Material - Water- Land - Emissions- Solid Waste- Waste Water- NoiseInput Building Project Output Figure 1.17 Life Cycle Energy Use of Buildings Adapted from: World Business Council for Sustainable Development, 2010 Maintenenece & renovation Use (heating, ventillation, hot water & electricity) Manufacturing,transport & construction4% 12% 84%

37 Sustainable Urban Energy: A Sourcebook for AsiaThe building sector has been one of the booming industries in Asian cities. More than 50 per cent of all new buildings con-structed are in Asia. Developed countries spend most of their energy in maintaining existing buildings, but the developing countries spend more energy in construction and development. The modern building and construction sector is very steel, ce- ment and glass based. All of these materials embody a high amount of energy equal to the sum of all the energy inputs during all stages of their life cycles. Table 1.5 shows embod-ied energy of commonly-used building materials, highlighting the fact that steel can have 24 times the embodied energy of wood, and aluminium a whopping 124 times. The residential and commercial sectors account for about 40 per cent of the total energy use. The International Energy Agency (IEA, 2006) estimates that current trends in energy demand for buildings will stimulate about half of energy supply investments up to 2030 in the developed countries. Embodied Energy Energy in use Materials kWh/tonWood Brick Concrete Plastic Glass Steel Aluminium X = 640kWh/ton 6404x 5x 6x 14x 24x 124x Adapted from: TSG, 2009037e rapid pace of construction taking place in Asia is unsus- tainable, and unless traditional building and construction methods are altered, they will account for immense amounts of energy, material, and water waste and contribute sig- ni036cantly to global climate change. (UNEP, 2008)

38 Sustainable Urban Energy: A Sourcebook for Asia Figure 1.18 Energy Consumption in Different Sectors Figure 1.19 Projection of Energy for Buildings by Region - 2003-2030 Adapted from: IES, 2007 Adapted from: World Business Council for Sustainable Development, 2010Transport Industry Residential Other Sectors Commercial30.3% 29% 27.1% 4.8% 8.8% 5 6 7 8 4 32 1 0 China* India* Japan Brazil US Europe OECD)2003 2003 2003 2003 2003 2003 2030 2030 2030 2030 2030 2030Commercial Residential Thousands of terawatt-hours * Energy use from marketed sourcesThe single largest use of energy in buildings has been attributed to either heating or cooling. Climatic conditions along with rising income levels have increased the demand for maintain-ing an optimum temperature in buildings. In 2005, 67 per cent of the domestic energy consumption in the EU was for heating purposes while it was 40 per cent in China222s urban areas. Built environments designed with little concern for bioclimatic

39 Sustainable Urban Energy: A Sourcebook for Asiaparameters create heat islands 1 (Figure 1.20) that necessitate the use of air-conditioning, causing energy wastages. In some of the Asian cities such as Tokyo and Shanghai, the rise in temperature is found to be about five degrees higher than the surroundings. This contributes to the vicious cycle of more and more air-conditioning (UN HABITAT, 2006), which is respon-sible for more than half of the peak power demand in many Asian cities (UN HABITAT, 2006). Japan heads the list with one hundred per cent air conditioning in the service sector (APERC, 2006). Figure 1.20 Urban Heat Islands Box 1.6 Reducing Energy Consumption in Buildings Adapted from: Roth, 2002 Source: UN-Habitat, 2011b Rural Rural Suburban Residential SuburbanResidential Downtown ParkCommercial Urban Residential Peak Cliff PlateauLate afternoon temperature33 92 85 32 31 30 oFoC 1 Heat Island: The buildings, concrete, asphalt, and human and industrial activities of urban areas have caused cities and spaces within cities to maintain higher temperatures than their surrounding areas. This phenomenon is known as 223urban heat island224. The air in an urban heat island can be as much as 5-10260C higher than surrounding areas (Geography, 2009) Construct 223greener224 built environments that use water and energy efficiently. Building more efficiently and re-skinning existing edifices can halve (or more) their use of energy and water. Given that approximately 75 per cent of the building stock that will be standing in developing countries in 2050 will be built over the next 40 years, building 221green222 therefore is not so much a luxury as a necessity from an economic develop- ment perspective. Furthermore, green buildings not only use less energy and leave a smaller carbon footprint 226 they also result in health-related economic benefits such as higher classroom attendance rates and fewer sick days. At the same time many technologies for improving the energy and water efficiency of buildings are mature and financially viable: the long-term savings outweigh the upfront costs. In the worldwide effort to reduce greenhouse gas emissions, improving the building sector thus represents a win-win opportunity. Governments can modernize building regulations so that they require more green features, such as solar water heaters that are winning acceptance even in low-cost housing developments in developing countries (e.g. via a Clean Development Mechanism project in South Africa).

40 Sustainable Urban Energy: A Sourcebook for Asia Energy and TransportTransport of people as well as of goods is a key component of today222s economic activities and its volume and intensity is in-creasing around the world. The problems and challenges associ-ated with transport, such as air and noise pollution, greenhouse gas emissions, petroleum dependency, traffic congestions, traf-fic fatalities and infrastructure costs, are growing equally fast. These challenges are especially pronounced in Asia222s developing cities. In 2008 passenger and freight transport accounted for about 22 per cent of the global CO2 emissions (IEA, 2010a). Mitigat- ing climate change will require drastic improvements in the sustainability of the transport sector. Adapted from: IEA, 2009Asia is experiencing a vehicle boom. Between 1977 and 2008, China222s vehicle ownership increased by a factor of 51, from 1 million to 51 million (Bloomberg News, 2010). Taken together, the Chinese and Indian consumers bought about 20 million Transport of people 1971 1975 1979 1983 1987 1991 1995 1999 2003 20072 2.5 1.5 1 0.5 0 Energy use (thousand Mtoe*)Non-specified (transport) World marinebunkers Internationalaviation Road freight Road passenger RailDomestic aviation Pipeline transportDomestic navigation * Million Tonnes of Oil Equivalent

41 Sustainable Urban Energy: A Sourcebook for AsiaComparing China222s car ownership per 1000 people (22.3) 2 in 2007 with the figures from the United Kingdom (463.5) or the United States of America (719.8), it is evident that the growth in car ownership will be sustained for years to come. 3 But there is also a sharp contrast in terms of car ownership between urban rich and rural poor. For example, Beijing222s vehicle owner - ship per 1,000 people rapidly increased from 9 in 1980 to 171 in 2009, which is much higher than the country222s average level (Naoko Doi, 2011). The increase in global vehicle ownership paired with an increase of the overall distance people travel in-creases the demand for oil which, according to Asian Develop-ment Bank (2007) estimates, will be three times more in 2030 than it was in 2007. Given the current dependence on oil, the global transport sector will face a challenging future if matters continue as they are today. new passenger vehicles in 2010, around 70 per cent more than consumers did in the United States of America in the same year. China is now the largest auto market in the world. The fast pace of car ownership increase in developing countries is appar - ent, as shown in Figure 1.22. 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050800 1000 1200 1400 1600 1800 600 400 200 100 0Eastern Europe OECD EuropeOECD Pacific OECD North America IndiaFormer Soviet UnionChina Car Ownership rates trend Index = 100 in 2000Figure 1.22 Car Ownership Rates Projected; Index = 100 in 2000 Adapted from: WBCSD, 2004 2 In 2008 China222s car ownership per 1000 inhabitant was 29 3 BBC News 223Cracking China222s car market224 May 17, 2007Growing numbers of vehicles on urban roadways will put huge stress on the urban transportation infrastructure and on the environment. (ABC 2010)

42 Sustainable Urban Energy: A Sourcebook for Asia 1980 2002 2020 1980 - 2002 2002 - 2020 PRC* Beijing Shanghai Hong Kong, China Indonesia Jakarta Japan Tokyo ROK* SeoulThailand Bangkok 2 9 5 41 5 34 203 159 7 15 - - 19 80 47 59 16 143 428 266 204 205100 324 65 177 100 70 26 161 522 271284 288 158 389 10.8 10.4 10.7 1.7 5.4 6.7 3.4 2.416.6 12.6 - - 7.1 4.5 4.3 1.0 2.7 0.7 1.1 0.11.9 1.9 2.6 1.0 *PRC: People222s Republic of China, ( - ): No data available, #: Annually projected growth rate *ROK: Republic of Korea Adapted from: APERC, 2006 Source: APERC, 2006Public Transport as well as cycling and walking are workable solutions for reducing energy consumption and CO2 emissions in the transport sector. For these to become valid options, infrastructure and soft policies (such as awareness campaigns, incentives to change lifestyles) coupled with hard policies (such as higher taxes on roads or on private vehicle ownership) need to be implemented. Cycling is best adapted to city centres and densely populated areas. 1.5 billion people are expected to live in cities with 1 million or more inhabitants by 2050. If a 5 per cent increase in mode share for cycling could be achieved in these cities, and if an equal increase were achieved in towns and villages containing another 1.5 billion people, car travel would be cut by around 600 billion km a year world-wide, saving 100 million tonnes of CO2 emissions. If it cost an investment of USD 5 per person per year to achieve this 5 per cent mode shift the total investment required would be of the order of USD 15 billion a year. But this would be more than offset by the direct cost savings from fuel alone which, at USD 60/barrel, would be around USD 25 billion per year. With other benefits including a healthier population, reductions in traffic congestion and emissions and time savings, the total cost of the cycling infrastructure would probably be very small compared to the net benefits, and the CO2 savings would come at negative cost.

43 Sustainable Urban Energy: A Sourcebook for AsiaThe twin phenomenon of urbanization and globalisation has increased the need for transportation of goods, within and in between cities, and between rural and urban areas. The logistic and supply chain sector contributes more than 5.5 per cent of total greenhouse gas emissions (World Economic Forum, 2009). In terms of emission intensity per tonne-km, air freight is the most carbon intensive, followed by road freight. Rail and ocean freight are the most carbon efficient modes. There is a large potential to reduce emissions just by changing the mode of transport for freights. The often cited example of Maersk Star Flower elaborates the carbon mitigation potential by shifting from air freight to ocean freight. For instance, transporting cut-flowers by sea rather than by air would cut the relevant CO2 emissions by 98 per cent. Using road transportation and opting for less carbon intensive ways (rails and waterways) must be encouraged by policy makers.Transport of Goods David Morris, an environmentalist tracks the journey of a toothpick which, he says, he picked up after fin - ishing his lunch in a restaurant in Minnesota. He learnt from the plastic packing of the individual toothpick that the toothpick had landed at his table from Japan. Morris deduces that a country that probably thought that it was cheaper to ship toothpicks to Minnesota from Japan probably sent its wood and oil across to the island, thus a toothpick travels 50,000 embodied miles. He further reveals that Minnesota had set up a factory to make chopsticks for exporting to Japan. This is the import-export paradigm in which our global economy runs. It is also the way our waste economy runs.Box 1.8 The Story of a Toothpick Source: Morris, 1988 Energy in Food Cities rarely produce food, and their supply of agricultural products normally comes from the rural hinterland and from the international market. This implies much energy use for transpor - tation, as well as for cooling and storing of food. In the United States, one farmer, with his complex array of fossil fuelled equipment, typically feeds 100 city dwellers. Ten times more fossil fuel energy goes into this type of food production than the resulting calories that are contained in the food produced (World Future Council, 2010). With the increase in urban population, more food will need to be produced and supplied from the hinterland. It will need In the period 2005-2030, more than half of the world222s increase in fuel consumption will come from transporta-tion. (ABC 2010)

44 Sustainable Urban Energy: A Sourcebook for Asiaa seven-fold increase of food production to feed the projected population of 9 billion in 2050 (OECD and FAO). This will de-mand a higher usage of energy and land resources in an era where the existing usage already has adverse impacts on the environment and agricultural land is continuously lost through urban sprawl. 2010 2015 2030 2050Developed countries Trillion kcal per day Developing countries 20 25 15 10 5 0Figure 1.23 Projected Food Demand Figure 1.24 Theoretical Potential for Cropland Expansion Adapted from: Vattenfall, 2009 Adapted from: FAQ, 2003400 600 800 1000 200 0 Arable land 1997-1999 Land suitable for rainfed crops Area (million ha) Industrial countries Transitioncountreis East Asia Sub-SaharanAfrica South Asia Latin America & Caribbean Near East & North Africa

45 Sustainable Urban Energy: A Sourcebook for AsiaThe need to increase agricultural productivity could be signifi- cantly addressed if we were able to reduce production losses (e.g. from pests, diseases, storage, processing, etc.) and food waste arising from transportation and consumption. Urban authorities can actively pursue the reduction of food waste at the consumer and retailer end with soft and hard policy mea-sures such as awareness campaigns and charges for food waste. Promoting urban agriculture has proven to be another success-ful tool in addressing food shortage.Figure 1.25 Per Capita Food Losses and Waste, at Consumption and Pre-consumption Stages Adapted from: FAO, 2011 Source: Michael Ableman, 2000 100 150 200250300 50 0 Europe North America &Oceanla Industriali-zed Asia Consumer Production toretailing Per capita food losses In kg/year Sub-saharaAfrica North Africa,West &Central Asia South &SoutheastAsia Latin America 223There is a quiet revolution stirring in our food system. It is not happening so much on the distant farms that still provide us with the majority of our food; it is happening in cities, neighborhoods and towns. It has evolved out of the basic need that every person has to know their food, and to have some sense of control over its safety and security. It is a revolution that is providing poor people with an important safety net where they can grow some nourishment and income for themselves and their families. And it is providing an oasis for the human spirit where urban people can gather, preserve something of their culture through native seeds and foods, and teach their children about food and the earth. The revolution is taking place in small gardens, under railroad tracks and power lines, on rooftops, at farmers222 markets, and in the most unlikely of places. It is a movement that has the potential to address a multitude of issues: economic, envi - ronmental, personal health, etc.224

46 Sustainable Urban Energy: A Sourcebook for Asia Energy in WaterWater is used in the production of energy and its supply, while energy is used to pump, treat and distribute water. With a growing population, the demand for water has been rising simultaneously, requiring more and more energy for making it available for human and industrial usage. Freshwater withdrawals have tripled over the last 50 years. It is estimated that the demand for freshwater will continue to increase by 64 billion cubic metres a year till 2050 due to rapid population growth, extensive deployment of irrigation methods and globally rising living standards 4 (UN, 2009a). The reliabil- ity and regularity of water supply in low-income countries is a big problem, with poor quality water and the high price when bought from street vendors. On the sanitation front, shared toilets and pit latrines are inadequate and poorly maintained in urban areas. Water for Energy Energy for WaterHydropower Extraction & Refining Thermo electric Cooling Extraction & Transmission Drinking Water Treatment Energy Associatedwith uses of water WastewaterTreatment Fuel Production(Ethanol, hydrogen)Figure 1.26 Water for Energy, Energy for Water Adapted from: World Energy Council, 20104 Hinrichsen, Robey and Upadhyay, 1997One of the largest uses of water is electricity production. To produce one kilowatt-hour of electricity requires 140 litres of water for fossil fuels and 205 litres for nuclear power plants. (Natural Re-sources Canada. 2004)

47 Sustainable Urban Energy: A Sourcebook for AsiaNon-Revenue WaterWater loss, also referred to as non-revenue water, refers to the total amount of water lost through leakage in distribution networks. A conservative estimate for this has been placed at around 35 per cent of the total water supplied (IBNET, 2011). For some low-income countries this loss may be as high as 80 per cent. Indian cities like Delhi and Indore lose about 50 per cent of their water production compared with Berlin (3 per cent losses) or Singapore (2.5 per cent losses) that have managed to attain very successful water distribution systems (WWF, 2010). Cutting these losses is important. However, passive leakage control, or repairing only the visible leaks, will not be sufficient. Reducing the total water losses by half would cost around USD 20 billion, and the amount of water saved could be used to serve almost 150 million people. In addition, the total revenue of Asia222s urban water facilities will increase by USD 4.3 billion annually (GIZ, 2010). Globally the agriculture sector accounts for around 70 per cent of water used depending on the income level of the nation (Figure 1.27). Developing countries use a higher proportion of water on agriculture than the industrialized nations. Also, in North America and Europe, agriculture is predominantly rain fed and does not require much irrigation unlike in Asia. 70% 30% 11% 59% 10% 8% 82% 8% 22%World High income countries Low & middle income countriesIndustrial use of water increases with country income, going from 10% for low and middle income coun- tries to 59% for high income countries Agricultural use Industrial use Domestic use Figure 1.27 Water Uses for Main Income Groups of Countries Adapted from: UNESCO, 2003 Asia has one of the world222s lowest per capita availabilities of fresh water. (ABC, 2010)

48 Sustainable Urban Energy: A Sourcebook for Asia Region Urban population System input NRWper day Value l/c/d NRW per year Central and West Asia East Asia Middle East South Asia Southeast Asia Total Asia 29 605 167 202 133 1,136 450230 250 180 280 13,050,000 139,150,000 41,750,000 36,360,000 37,240,000 267,550,000 5,220,00034,787,500 12,525,000 12,726,000 13,034,000 78,292,500 4025 30 35 35 1.4 9.5 3.4 3.5 3.6 21.4 0.53.2 1.1 1.2 1.3 7.3 1.912.7 4.5 4.7 4.9 28.7 0.63.8 1.4 1.4 1.5 8.6 (Service connections in millions) (litres per capita/day) (billion USD/year) (Commer - cial Losses billion m 3 / year) Total (Physical losses billion m 3 / year) m 3 /day m 3 /day %/dayAdapted from: WHO/UNICEF, 2006 Adapted from: HPEC, 2011Most investments in water infrastructure are spent on increas- ing production instead of maintaining or improving the existing facilities. By reducing water losses, water utilities have addi-tional supply to expand services to previously unserved areas. Water scarcity is certainly not only an issue of availability of water, but very much also a lack of appropriate management and governance of water systems. 4000 3000 20001000 0 Public Connections Private Connections Private Water Tanker Standpost Water

49 Sustainable Urban Energy: A Sourcebook for AsiaAnother challenge for many Asian cities is the intermittent water supply, as only 30 per cent of Asian cities have 24-hour water supply. An intermittent water supply forces the poor to forgo work on days when water arrives in order to collect it. Alternatively, they may have to pay a much higher cost for sup-ply from illegal or informal networks. Industries and CommerceIndustrial growth drives economic development but also raises the demand for energy. Urban industry is usually fossil-fuel driven and directly contributes to increased air pollution and greenhouse gas emissions. The industrial sector in Shanghai uses 80 per cent of the total energy. In Thane city, near Mum-bai, industry that has only 2 per cent of the users, consumes 44 per cent of all energy supplied (ICLEI, 2009a). Similarly, the commercial sectors such as hotels, restaurants, shopping malls and entertainment places that define the new urban life, are vast consumers of energy. In some cities the energy use in the industrial or commercial sector is so huge that it can draw in all energy that is supplied, impacting severely on those living in the peripheries. Transport BuildingsIndustry Urban energy consumption 80 100 60 4020 0 Beijing Shanghai Kolkata Bangkok Kathmandu Figure 1.29 Energy Consumption per Sector in Selected Asian Cities Adapted from: UN-Habitat, 2008Air pollution, mostly indus- trial, prematurely kills two million people a year, the majority in the developing world. (ABC, 2010)

50 Sustainable Urban Energy: A Sourcebook for Asia A final, complementary approach to promoting environmentally-friendly economic development involves focusing on 221green222 industries and trying to create more green jobs. While the impact of this approach on urban patterns may be less direct, as it focuses more on the economics of industrial location and growth and less on urban agglomeration this strategy still directly addresses green economic growth within the city-region. WasteIn the past, waste resources were regarded as rare and pre- cious. Each resource, including what we would today define as waste was used and reused, transmuted into a new resource. This attitude of careful resource management still exists to-day in some cultures and especially in villages in developing countries where everything has a value, and nearly nothing is wasted. However, with development and improved resource ex-traction and production, the increase in wealth and a change in lifestyle, the amount of worldwide waste produced has started to explode. The problem faced now is how to avoid, minimize, reuse and recycle the generated waste. Today, cities consume approximately 80 per cent of the world222s resources and they are also responsible for the discharge of waste in similar propor - tions (World Future Council, 2010). We can roughly distinguish between two kinds of waste: mu- nicipal waste and industrial waste. Municipal waste refers to household waste and other waste related to economic activities (including restaurants, shops, malls, etc.) and public or private activities (such as schools, etc.). Industrial waste on the other hand is linked to extraction, production and disposal of products. Debris from the construc-tion and demolition sector, waste from mining activities, waste generated by agricultural activities as well as hazardous waste can be grouped under the industrial waste category. It is esti-mated that the total amount of municipal and industrial waste produced worldwide is about 4 billion metric tons annually, and this does not include waste from construction, mining, agricul-ture and forestry. Box 1.10 Promote Clusters of Green Industries and Green Jobs Adapted from: UN-Habitat, 2011b037e amount of waste gener- ated is often linked directly to income level and lifestyle. (EWAB, 2008)

51 Sustainable Urban Energy: A Sourcebook for AsiaThe total municipal waste collected worldwide for the year 2006 is estimated at 1.24 billion metric tonnes. Organic waste and paper contribute substantially to the total amount of mu-nicipal waste, while plastic, glass and metal are other contribu-tors. But again income level, lifestyle as well as the longevity of products consumed influence the composition of municipal waste. Low-income households have a higher percentage of organic waste than higher income households, while richer households discard more plastic, glass and metal due to their consumption pattern. Waste Quantities collected World total municipal waste Manufacturing industry non-hazardous waste Manufacturing industry hazardous waste for a selection of countries T otal 1.7 - 1.9 billion 1.2 - 1.67 billion 490 million 3.4 - 4 billion 1.24 billion 1.2 billion 300 million 2.74 billion Table 1.8 Estimated World Waste Production and Collection for 2006 Adapted from: Veolia, 2009 (Tonnes) (Tonnes)Quantities produced City Number of personsinformal sector Cairo, Egypt Cluj, Romania Lima, Peru Lusaka, Zambia Pune, India Quezon City, Philippines 2,162,500 14,700 529,400 5,400 117,900 141,800 40,000 3,200 11,200 390 9,500 10,100 Adapted from: Veolia, 2009 (Tonnes) Quantities recycled by year

52 Sustainable Urban Energy: A Sourcebook for Asia Muncipal waste in kg/inhabitant/year 760 680 577 480 434 339 337 461 400 346 382 380 235 237 146 332 375 144 180 127 255 230 361 164 209 220 199 250 164 82USA Ukraine Thailand Australia Singapore EU NM Mexico South Africa Bangladesh Vietnam (urb) Pakistan Indonesia Philip-pines Argentina Venezuela Colombia Morocco India(rur) India(urb) Republic of Korea China Russia Canada(domestic) EU IS Turkey Japan Taiwan Brazil Hong Kong New Zealand Figure 1.30 Municipal Waste in kg/Inhabitant/Year Adapted from: Veolia, 2009Recycling is now globally accepted as the most efficient way of managing waste. Producing paper, glass, plastics and extracting metals from ores is much more energy intensive than recycling and reusing. According to a study by the Waste & Resources Action Programme (WRAP 2010), up to a 95 per cent energy reduction can be achieved from recycling waste materials. Recy-cling also reduces emissions of pollutants that can cause smog, acid rain and the contamination of waterways (Sanjeev, 2009). The informal sector of waste recycling and collecting is highly developed in many developing countries, such as India. Often the waste is sorted for recycling at the landfill sites themselves. According to some estimates about 15 million persons world-wide are involved in material recycling in developing countries alone. With an informal economy of several hundred million dollars such activities have the potential of being formalized by creating micro-businesses and cooperatives. In Dhaka222s slums for example, organic matter, which accounts for about 80 per cent of the total waste generated is being composted and sold as a fertilizer (EWAG, 2008).Recycling makes an impor- tant contribution to reduc- ing energy consumption and associated pollution of air and water. (UNEP, 2008b)

53Cities hold the Keys to Energy Sustainability223Every city can improve its quality of life in less than three years. No matter the scale of the city, no matter the 036nancial conditions.224 - Jaime Lerner, Architect and former Mayor of Curitiba, BrazilIn the previous chapter we saw that today222s cities are following an unsustainable path of development by consuming most of the world222s available energy resources that are mainly based on fossil fuels. But this makes cities potentially the most ef-fective agent of change. Cities thus hold the keys to energy sustainability. Increas-ing concern of climate change has resulted in falling costs for renewable energy technologies, and at the same time resource intensive technologies are becoming more expensive. For change to happen we do not have to wait for future technolo-gies to emerge, a lot can be achieved using existing technologies, smart urban planning, energy conservation and improvements in efficiency. The challenges for achieving sustainable urban energy systems are: energy suf- ficiency, energy conservation, energy efficiency and the deployment of renewable energy systems and appropriate technologies. Developing green cities and green economies will need supportive policies, capacity building, knowledge transfer, financial support mechanisms, market stimulation and sensitizing the population, both at the national and the local level. This chapter introduces some concepts that have the potential to transform the current urban energy related practices. It explores answers to the following ques-tions: - How do we provide urban energy without adversely impacting the local or the global environment and in an equitable and economically sustainable manner?- How can we build Smart Cities that are energy sustainable?- How do we close the loop to achieve more energy efficiency?- How can cities reduce their carbon footprint?- What is integrated urban planning? 02.

54The 1972 UN Stockholm Conference focused international attention on environmental issues, especially those relating to environmental degradation and 223trans boundary pollution.224 Over the decades following Stockholm, this concept was broadened to encompass environmental issues that are truly transnational in scope, requiring concerted action by all countries and all regions of the world in a universal manner in order to deal with them effectively. Such important global environmental problems include all kinds of pollution, climate change, the depletion of the ozone layer, the use and management of oceans and fresh water resources, excessive deforestation, desertification and land degradation, hazardous waste and depleting biological diversity. In the years that followed, it also came to be recognized that regional or local environmental problems, such as extensive urbanization, deforestation, desertification, and gen-eral natural resource scarcity, can pose serious repercussions for broader international security. Environmental degradation in diverse parts of the developing as well as the developed world can affect the political, economic and social interests of the world as a whole. International recognition of the fact that environmental protection and natural resources man- agement must be integrated with socio-economic issues of poverty and underdevelopment cul-minated in the 1992 Rio Earth Summit. This idea was captured in the definition of 223sustainable development,224 as defined by the World Commission on Environment and Development, also known as the Brundtland Commission, in 1987 as 223development that meets the needs of the present without compromising the ability of future generations to meet their own needs.224 The concept was designed to meet the requirements of both the supporters of economic develop-ment as well as of those concerned primarily with environmental conservation. Today, it is recog-nized that social, economic and environmental considerations are completely interconnected. In the city context, this means that sustainable urban development is not a choice but a necessity if cities are to meet the needs of their citizens. Urban centres must be socially equitable, economi-cally successful and environmentally sustainable if cities are indeed to be the home of humanity222s future. Source: www.un.org

55 Sustainable Urban Energy: A Sourcebook for Asia From Energy Supply to End- use: Huge losses in the Conver- sion Chain2 .1223It222s so much cheaper to save fuel than to buy it.224 - Amory Lovins, Chairman of Rocky Mountain Institute in Colorado By analysing current energy systems we can trace losses, and hidden and compounding cost, which will help us in understanding which interventions will be more (in terms of cost and ecology) effective in achieving more sustainable energy systems. Typically, centralized energy systems waste more than two thirds of their energy in the process of generation, transmission and consumption. These are huge losses. It also means that every kWh saved at the consumer side equates to at least 3 kWh worth of energy that does not need to be produced in the first place. A similar analysis can be applied to other systems such as food, water or transport services (Figure 2.1). The point is that energy conserving interventions at the end-user level translate into substantial savings at the production, transmission and distribution side, no matter which resource system we are looking at.Every US dollar invested on demand-side management of electricity can save more than 2 US dollars of investment in the power sector227or almost 3 US dollars in developing countries. (ESCAP, 2008) Primary Energy EnergyFacility Energy using Equipment/System Final Energy SecondaryEnergy End-use Energy Transmission& DistributionCoal, oil, gas... Refined oil, electricity... Pipeline, grid network, railways... delivered to consumers... Lamps, motors, machines... Lighting, motive power, chilled water... Manufactured, food cooked, distance travelled... Refineries, power plants...

56 Sustainable Urban Energy: A Sourcebook for AsiaCan we imagine reducing energy consumption by 75 per cent (also known as Factor 4) or more, through energy conservation and energy efficient technologies? What would be the equiva-lent power plant capacity that can be avoided, and the resulting savings? Amory Lovins introduced the concept of a 223Negawatt224. Much like the classic concept of using machines to generate electricity or a Megawatt, reducing demand side energy consumption increases the available sup- ply side generation capacity. This reduces the need for additional generation capacity while lowering the emissions from fossil fuels used in most electricity generating technologies. This means that every organiza - tion can be a 223virtual power generator224 by generating Negawatts 226 the absence of consuming Megawatts.Box 2.2 From Megawatts to Negawatts Source: Frieden, 2010 Achieving Factor 4 with Compact Fluorescent Lamps (CFLs)Let us consider a fossil fuel based energy plant with an initial energy input of 100 units, 65 units get wasted at the source due to generation inefficiency and heat wastage. Another 5 units get wasted in the transmission and distribution process via the high voltage power grid. Hence, from the initial 100 energy units, only 30 units are available for the end-use; however, 27 units (or 90 per cent) go to waste because of an inefficient end use and conversion process (incandescent lamp). As a result, an input of 100 units of primary energy on the supply side will re-sult in an equivalent of only 3 units of energy service rendered at end-use; the remaining 97 units go to waste (Figure 2.2). l Coal Lamp Radiant Energy Illumination PowerPlant TransmissionGrid Primary Energy Heat Power End-Use Energy Transmission &Distribution100 35 31 3

57 Sustainable Urban Energy: A Sourcebook for AsiaThe conventional reaction to this would be to first scale up the energy production by adding new power plants and then im-prove the efficiency of the production and transmission process, though this may not be the most efficient and cost effective in-terventions at hand. By looking at the end-use level first, where according to the example given above 90 per cent or 27 energy units get wasted in the conversion process, we can further trace the losses back in the energy supply chain. Out of the 100 ener - gy units, only 3 units finally give us the desired level of lighting. And this is the point where there are low hanging fruits and where energy efficiency initiatives should start. Let us assume that these 3 units of useful lighting service are obtained by using an incandescent lamp of 100 Watts. On the other hand, compact fluorescent lamps (CFLs) are 4 to 5 times more efficient than incandescent lights, delivering the same lighting service while using about 25 Watts of electricity. By switching from an incandescent light to the CFL, we can divide the energy consumption by a factor of 4 (Figure 2.3). That will not only result in financial savings for the end-user, but by replacing an incandescent lamp with a CFL, the 100 units of primary energy needed to supply the 3 end-units will be reduced to only 25 primary units for the same service output. This represents a saving of 75 units of primary energy by simply adopting a more efficient appliance. l Coal Lamp Radiant Energy Illumination PowerPlant TransmissionGrid Primary Energy Heat Power End-Use Energy Transmission &Distribution 100 35 313.0 7.7 8.8 25 Lighting is one of the lowest hanging fruits for energy- e035ciency measures because the transition can occur at relatively low costs with al- ready existing technology and provides immediate results.(UNEP, 2008)

58 Sustainable Urban Energy: A Sourcebook for AsiaCFLs or any other energy efficient appliance has one obstacle in becoming popular, which is the high initial cost. But in the long run this initial higher investment will pay off in both consumer and production investment through energy savings. Another decisive advantage of CFLs is their long life span, typically 5-10 times longer than the conventional incandescent lamps. The only drawback to using compact fluorescent lamps is that each bulb contains about 5 milligrams of mercury, a toxic heavy metal that is harmful for humans and the environment. Proper recycling of CFLs is important. The future alternative to CFLs may be LEDs (light-emitting diodes), they contain no mercury or other toxic substances and are even more energy efficient than CFLs.Promoting energy efficient appliances instead of scaling-up the production capacity is one of the most cost effective inter - ventions, resulting in both financial savings and the lowering of CO2 emissions. Reducing losses in the transmission phase through smart grids and a more decentralized power-supply system are more capital-intensive interventions but they will further improve energy efficiency. After energy improvements have been made, the next step would be to revert to renew-ables for energy production; the use of fossil fuel should be considered as the last resort. Let us pick up our example of lighting again. Energy conserva- tion in this context could mean asking the simple question: Do I need to switch on the light? If it is daytime I may just open the curtains to let in more natural light or go into another room where there is enough light. By not using artificial lighting at all, we will save all 100 units of primary energy. Looking at the energy pyramid again (Figure 2.4) we see that the low hang-ing fruits for reducing losses in the energy system and hence reducing carbon emissions are energy conservation and energy efficiency. Energy e035ciency improve- ment is the most preferable alternative, since each kilo- watt034hour of conventional coal generated electricity saved results in a roughly 1kg (1000g) reduction in emis-sions. (APERC 2010)

59 Sustainable Urban Energy: A Sourcebook for AsiaFigure 2.4 Energy Pyramid - Example of CFLs Renewable Energy Fossil FuelDo we need it? For eg. light during the day Using natural light instead of artificial light (saving 100 units) Using CFLs or LEDs instead of incandescent light (saving 75 units) Using renewable energy What is the least energy consuming design? What is the most efficient technology for it? What is the most sustainable production? What is the last option? Use fossil fuel as final resource only kWh per year Costs in USD 100 Watt incandescent lamp 25 Watt CFL 146.0 36.5 109.5 8.76 2.19 6.57 Note: assumptions for the calculations: price per kWh is US$ 0.06; 4 hours use per day; in USD Cost of CFL lampCost of incandescent lamp Payback rate in years 40.5 6.57 0.53 Table 2.2 Payback Rate for CFLs

60 Sustainable Urban Energy: A Sourcebook for Asia End user Power utility Fossil-fuel based thermal power plant Virtual power generation capacity by a kW Production Operating Cost USD 40 USD 1,000 3 million CFLs per year1 USD 20 - 25 million USD 1.08 billion Production Operating Cost 1,350 MW USD 1.35 billion ??? (mainly fuel cost) Box 2.4 Gains of Phasing out Incandescent Bulbs Electric lighting consumes 19 per cent of global electricity grid production and is responsible for more than 1,500 million tonnes of carbon dioxide (CO2) per year, the equivalent of emissions from more than half of the world222s light passenger vehicles. By phasing out incandescent lamps (ILs), peak power demand and black-outs in a large number of developing countries could be substantially reduced, making electricity available for other uses and helping to ensure energy security. When considering both aspects of the cost benefits 226 energy savings and saved investments 226 the transition to energy efficient lighting technologies is financially one of the most attractive projects worldwide, and the 223lowest hanging fruit224 when it comes to energy efficiency initiatives. Shifting to efficient lighting technologies would cut the world share of electricity used for lighting from 19 to 7 per cent. This would save enough electricity to close 705 of the world222s 2 670 coal-fired plants. In ad-dition, it could save countries and users a considerable amount of money in avoided electricity bills, making these resources available for other human needs. Few actions can cut carbon emissions more easily than the phasing-out of inefficient lighting, making it one of the most effective and economically advantageous means to combat climate change. Source: www.enlighten-initiative.org

61 Sustainable Urban Energy: A Sourcebook for Asia Factor 4 for the Building SectorAccording to the IPCC (2007) report, buildings have the largest potential of any sector for reducing GHG emissions, estimated at 30 per cent by 2030. There are many ways to improve energy efficiency of existing and new buildings. For existing buildings, adding insulation and replacing windows and doors with high efficiency models can significantly reduce energy costs. New buildings can be designed to make them more energy effi-cient in the first place. Smart and energy efficient appliances, waste-heat recovery systems, solar thermal installations, natural ventilation, improved lighting technologies and greater use of daylight are some of the recommended measures to reduce energy consumption. Green roofs are another way to insulate buildings, and even planting trees that provide shade in sum-mer and allow light into the building during winter can make a significant difference (Metz, Davidson, Bosch, Dave & Meyer 2007). The cost of implementing Green Building Standards is estimated to be 3-5 per cent higher than conventional building, but theycan significantly reduce energy consumption and carbon emis-sions and result in financial savings in the long run. Buildings may even be designed to become centres of prosumption (see chapter 2.2), producing energy that can be fed back into the grid, they can also be used to harvest rainwater, convert bio-degradable waste into biogas or organic compost and produce a certain percentage of their own food demand. - Passive solar design (orientation, solar protection, natural ventilation, daylighting, etc.) - Building envelope (insulation of walls and roof, special glazing) - Lighting (efficient lamps, fixtures, control) - Heating and cooling equipment- Other appliances (refrigerator, washing machine, computer) - Solar thermal (heating, and cooling, photovoltaic (electricity) - Wind turbine- Biomass and biogas - Efficient transformer and high power factor - CogenerationSustainable design Renewable energy Fossil fuelFigure 2.5 Energy Pyramid for BuildingsRetro036tting and replacing equipment in buildings has the largest potential within the building sector for reduc-ing greenhouse gases by 2030. (UNEP, 2008b)

62 Sustainable Urban Energy: A Sourcebook for AsiaA widely used measure in Green Buildings is the zoning of buildings (dividing the building into separate zones, each with a different indoor climate and hence a different energy re-quirement). This enables one to make the most use of natural sources for heating, cooling and lighting and can achieve up to 30 per cent energy saving (Hyde. R. A. 1998). Looking at the energy pyramid again (Figure 2.5), we see that the most effective changes in terms of reducing energy consumption can be made by adopting sustainable design approaches; this is the least cost intensive option resulting in major energy savings. If one conceives a building based on bioclimatic design principles, then the use of air conditioners or indoor lighting will become redundant during a good part of the year and no energy will be needed to run such appliances. The second step is to reduce energy consumption by using energy efficient appliances such as energy-star rated fridges. These two measures can result in an overall saving of 75 per cent energy (also known as Factor 4) per household. Resorting to renewable energy systems such as solar or wind, will further reduce the carbon footprint. If we assume an average household consumes 10 kWh per day, saving 75 per cent at the end use level (factor 4) will result in savings of 7.5 kWh per household per day. For a medium sized city of 1 million households this savings would be equivalent to a virtual power plant producing 7,500 MWh of electricity per day. This translates into financial savings of USD 312 million that would have been needed for the initial investment on a power plant of this capacity. These financial savings through en-ergy efficient buildings could in return be invested into further energy conserving and efficient technologies and into renew-able energy systems. kWh per year Spendings in USD a year 3650 912 2738 146 37 109 Assumptions: average consumption per household per day is 10 kWh; price per kWh is US$ 0.05Green Buildings reduce their energy load by integrating e035cient systems (heating, cooling, lighting, water); use alternative energy sources (passive solar, alternative energy sources); retain en-ergy (e035cient insulation and windows, thermal mass); and use recycled, reused, or low-energy building materials. (UNEP, 2008b)

63 Sustainable Urban Energy: A Sourcebook for AsiaBut one does not have to stop short at factor 4. A transition in energy efficiency from factor 4 to factor 8 or even factor 10 ispossible by using cogeneration (cooling or heating, refer to Figure 2.16) or trigeneration (cooling or heating and steam generation). Other viable concepts are Bioclimatic architecture, Low energy/Zero Energy building and Green buildings, as briefly described below. Source: Yudelson, 2007Green or vegetated roofs are becoming increasingly common. These roofs reduce the impact that sprawling development has on storm water problems, especially in urban areas. With a green roof, a portion of the rain is absorbed by the plants and soil, and over time is returned to the atmosphere through evaporation and transpiration similar to an open lawn or field. Using plants or vegetation that need low maintenance and are drought resistant decreases the upkeep of the roof. Green roofs also reduce heating and cooling Bioclimatic ArchitectureBioclimatic design means that the building is adapted to the particular weather conditions of its geographical region. It mini-mizes additional energy input while achieving the comfort level of a conventional building at the same time. It uses two main design principles - active and passive solar design. The active solar design is directed towards solar energy captured by me-chanical or electrical systems such as solar collectors and pho-tovoltaic panels. Passive solar design, on the other hand, uses little or no mechanical assistance at all, but rather a number of design techniques to reduce the energy demand for heating, cooling and lightning of a building. Traditional architecture fol-lowed bioclimatic design principles since artificial heat and cold sources were either not available or expensive. Bioclimatic elementsActive systems Passive systems - Solar collectors - Photovoltaic panels - Direct solar gain- Indirect solar gain- Isolated systems: Sunspaces and atria - Thermal walls with air preheating- Trombe walls- Mass walls- Collectors and grave fillsFigure 2.6 Bioclimatic Architecture Adapted from: IUSES, 2010

64 Sustainable Urban Energy: A Sourcebook for Asia Low-energy and Zero-energy Building Green Building: Going Beyond EnergyA low-energy building demands only a small fraction of the energy consumed by a traditional building. On the other hand, a zero-energy building produces as much energy as it consumes and draws its energy needs from renewables. These buildings try to reduce the amount of external energy required through the application of intelligent design like solar passive techniques and the use of efficient lighting technologies and appliances (see chapter 3). Green Buildings do not limit their efforts to only reducing their carbon footprint through energy efficient design and renew-able resources. They also look for using key resources like water, building materials, energy, waste and land in a more efficient and environment-friendly manner. Green buildings often incor - porate the following features: - Careful site selection to minimize impacts on the surrounding environment and increase alternative transportation options. - Energy conservation to ensure efficient use of natural resourc- es and reduced utility bills. - Water conservation resulting in reduced utility bills. - Responsible storm water management to limit disruption of natural watershed and reduce the environmental impacts of storm water runoff. - Waste reduction, recycling, and use of 223green224 building ma- terials. - Improved indoor air quality through the use of low volatile organic compound products and careful ventilation practices during construction and renovation. - Reduced urban heat island effect to avoid altering the sur - rounding air temperatures relative to nearby rural and natural areas. (EPA, 2010)Energy-e035cient buildings with green architectural design features and technolo- gies are another high-potential opportunity that can yield as much as a 50 per cent reduc- tion in energy consumption for buildings in Asia; savings could be even higher in cities with tropical climates. (ABC, 2010)

65 Sustainable Urban Energy: A Sourcebook for Asia Factor 4 for the Water SectorAchieving factor 4 savings in the water sector will again have to start at the demand side rather than on the supply side. If demand can be reduced, then the energy required to pump and treat water will decrease. This will also decrease the amount of waste water that flows to treatment plants which results in less energy input for treatment. To help decrease water demand, some or all of the following can be used:- campaigns that make people aware of wasteful habits- water pricing and metering - low-cost water saving technologies such as low flush toilets, low-flow shower heads and faucet aerators - water efficient appliances that help to reduce water use and ultimately energy use. The largest daily user of water in the home is the toilet. By replacing an old water intensive model with more water efficient one, the total water usage and the energy input for water can be greatly reduced. Old model toilets use up to 12-13 litres per flush, while new models use only 4-6 litres and composting toilets do not require flushing at all. Dual flush toilet systems, due to their ability to save up to 67 per cent of water usage water would help us to achieve factor 4 in regards to water and energy consumption for toilet flushing (The ABC of Toilets, 2011). Reduced water demand Treat wastewater and reuse Capture rainwater Buy waterFigure 2.7. Water Pyramid for BuildingsEnergy e035ciency retro036t for existing housing stock should incorporate water e035ciency measures, since these have the potential to save water, CO2 and money. (Energy Saving Trust, 2009)

66 Sustainable Urban Energy: A Sourcebook for AsiaIn most developing countries, electricity costs account for 40-60 per cent of the total operating costs of the water supply sys-tem. The quantity that is lost during the supply and distribution, also known as non-revenue water, is estimated to be as high as 33-50 per cent. Non-revenue water is normally from leakages in the pipes, throttle losses and pump losses, and translates into substantial energy losses (ASE, year unknown). Hence reducing water losses will help reduce the total load on the utility. One action to reduce energy consumption in the water sector is to propagate the use of more efficient and properly sized water pumps. Pumping systems are often improperly sized, poorly maintained and highly inefficient. This increases the amount of energy needed to deliver water. The total cost of a water pump over its lifetime, can be broken up into 3 per cent for its pur - chase 23 per cent for its maintenance and 74 per cent for the energy needed to run the device (ASE, year unknown). These figures highlight the potential for financial and energy savings that can be achieved by replacing energy inefficient pumps with energy efficient ones. Many pumps are efficient only when they run at full capacity, but this happens only during peak demand periods. During off-peak times these pumps are simply too big and energy intensive. Having a different pump size according to the load will reduce energy costs. Other measures for energy savings in the pumping system are listed in Table 2.5.Water metering results in lower CO2 emissions as well as lower water use. (Energy Saving Trust, 2009) Primary Energy Power Plant losses Transmissionlosses Motorlosses losses Pumplosses Throttlelosses Pipelosses100 30 25 20 13 12 10 2125 7.5 6.25 5 3.25 3 2.5 4.2

67 Sustainable Urban Energy: A Sourcebook for Asia S 10% 226 30% 5% 226 50% 5% 226 20% Source: ASE, year unknown Source: http://www.toiletabcs.com Energy measure Energy (in per cent) Some utilities often enforce and promote water restrictions through rates, municipal ordinances, federal laws, regulations and financial incentives. Typical examples include: - Financial incentives to install water-efficient toilets - Municipal ordinances allowing watering the garden only on certain days of the week or when designated - Banning fountains unless they run on re-circulated water - Requiring homes to have low-flow shower heads and faucet aerators

68 Sustainable Urban Energy: A Sourcebook for Asia From Consumption to Prosumption þ 2 . 2223037e world will not evolve past its current state of crisis by using the same thinking that created the situation.224 - Albert EinsteinBesides the importance of supply and end-use efficiency there is another area that has a significant potential in making cities more sustainable and self-sufficient. 223Prosumption224 is the ability to produce a part of what one con- sumes as a product or service in a sustainable manner. It refers to the informal production of goods and service at the home or community level, but it can also be widened and applied at the city level. This can be applied to any sector such as energy, food, water and waste. Examples of prosumption include fuel cells, rooftop solar shingles, wastewater treatment, water harvesting, rooftop gardens, etc., all of which convert homes, communities and cities into places of production. Green cities generally have targets of achieving a certain level of prosump-tion, and try to reach these on a regular basis. Renewable Energy While energy efficiency initiatives reduce the amount of energy consumed, renewables offer alternative sources of energy, which are less carbon intensive. The global market for renew-able energy is growing rapidly. Many pioneers around the world have made their communities (and cities as well) self-sufficient through renewable energy technologies. A combination of tar - gets, policies, stimulus funds and a growing concern for energy security is at the bottom of the transformation from conven-tional energy to more renewable energy production. While renewables currently account for 16 per cent of the world222s primary energy supply, their share is as high as 32 per cent for Asia (IEA, 2007b). The UN Environment Program (July 2011) reported a 32 per cent rise in green energy investments worldwide in 2009 and 2010, accounting for about 50 per cent Renewable energy together with other emerging technolo- gies are now ready for use on a large scale and have the po-tential to meet world energy demand in a sustainable way. (UNESCAP, 2008)

69 Sustainable Urban Energy: A Sourcebook for Asiaof newly added capacity. Investment in renewables amounted to a record USD 211 billion in 2010, which is five times more than in 2004. Developing countries overtook developed ones in terms of financial investment in renewables. China emerged as the world leader in the renewable energy market with USD 48.9 billion of new investments. India increased its investment in renewables by 25 per cent to USD 3.8 billion. The other de-veloping countries in Asia witnessed an increase of 31 per cent to USD 4 billion (REN21, 2011a). Figure 2.9 Renewable Energy Share of Global Final Energy Consumption Adapted from: REN21, 2011a 81% 3.4% 1.5% 0.6% 0.7% 10% 2.8% 16%Fossil fuels Renewables Nuclear Hydropower Biomass/solar/ geothermalhotwater/heating Wind/solar/biomass/ geothermal power generation Biofuels Traditional biomassThe strongest growth in renewable energy systems has been in grid-connected power facilities such as small hydro, wind farms, solar PV and biomass cogeneration systems. Figure 2.9 shows that globally, energy from wind and biomass installations make up the major share of renewable energy. A World Bank study concluded that for off-grid or mini-grid systems, most renew-able energy systems are indeed cheaper than gasoline or diesel generators (WB, 2006).Renewable sources of energy are likely to increase in impor- tance as technology improves and costs continue to fall.(UNESCAP, 2008)

70 Sustainable Urban Energy: A Sourcebook for Asia Gigawatts Others Geothermal power Solar PVBiomass power Wind power 0 50 100 150 200 250 300 350 World total Developingcountries EU-27 United states China Germany Spain IndiaFigure 2.10 Use of Renewable Energy Systems around the World. Solar and Wind take the Major Adapted from: REN21, 2011a and World Energy Council, 2004 Succeeding with Renewables Intermittence of supply 5 and the high upfront cost are the main deterrents of renewable energy technologies. Continuity of energy supply is what most urban areas need. However, one of the intrinsic strengths of renewable energy systems is the variety of sources that can be tapped to overcome intermittency. Solutions could come from many sources but not all solutions will fit every location. A careful analysis of the energy sources available locally needs to be done. Solutions may even be hid-den as in the case of energy from waste and heat recovery. Using only renewable energy technologies (RETs) to cater to the existing demand for energy can become very capital intensive. One needs to first look at ways of reducing the city222s demand for energy, by designing urban infrastructure appropriately to suit the local conditions, followed by judicious choice of energy-efficient appliances, which are chosen on the basis of value engineered demand. Once the demand is reduced and well managed, then renewables can be looked at. Renewables may not make much sense if the demand is not analysed and controlled through efficiency measures. 5 Intermittence is a term that is mostly used for power supply that is erratic and not continuous.Renewables represent half of newly installed electric capac- ity worldwide in 2010, and they are becoming increas-ingly important in the heating and transport sectors (REN, 2011)

71 Sustainable Urban Energy: A Sourcebook for Asia Figure 2.11 Planning for RETs Understand local conditions Sustainable design of infrastructure Energy appliances Renewable energy systems The increasing use of renewables will result in a more decentral- ized energy system. Existing technologies applied in a decen- tralized way and combined with efficiency measures and zero emission developments, can deliver low carbon communities. Power can be generated using efficient cogeneration technolo-gies producing heat (and sometimes cooling) plus electricity, distributed via local networks. This supplements the energy from building integrated generation. Energy solutions come from local opportunities at a small and community scale. The town in Figure 2.12 makes use of 226 among others- wind, bio-mass and hydro resources; natural gas, where needed, can be deployed in a highly efficient manner. 1 2 3 5 4 1. Photovoltaic, solar facades will be a decorative element on office and apartment buildings. Photovoltaic systems will become more competitive and improved design will enable architects to use them more widely. 2. Renovation can cut energy consumption of old buildings by as much as 80 per cent - with improved heat insulation, insulated windows and mordern ventilation systems. 3. Solar thermal collectors produce hot water for both their own and neighbouring buildings. 4. Efficient thermal power (chp) stations will come in a variety of sizes- fitting the cellar of a detached house or supplying whole building complexes or apartment blocks with power and warmth without losses in transmission. 5. Clean electricity for the cities will also come from farther afield. Offshore wind parks and solar power stations in des - erts have enormous potential.Electricity Hot water Heating and electricityFigure 2.12 A Decentralized Energy Future for Cities Adapted from: Greenpeace, 2009

72 Sustainable Urban Energy: A Sourcebook for AsiaBox 2.7 Feed-in Tariffs Box 2.8 Voluntary Actions of Cities Source: (REN21, 2011b) Feed-in tariffs are very common around the world at the national level and in a few cases at state/provincial levels, but not at the local level (see REN21 Renewables Global Status Report for 2007 and 2009 for more details). However, a new trend starting in 2008 was for cities and local governments to consider electric utility feed-in policies and explore how to implement these policies. The first city to adopt a local feed-in tariff in the United States was Gainesville, Florida, in 2008; Sacramento, California, was to start a feed-in tariff in 2010. Cities all over the world undertake voluntary actions to promote renewable energy. Financial incentives like subsidies, loans and grants to end-users are common. Local governments are also investing in public or private renewable energy projects; providing municipal land or building rooftops is another possibility for local authorities in promoting renewables. Table 2.7 gives an overview of some of the actions taken by local governments in Asia to support renewable energy systems. These are discussed further in the last chapter.Urban authorities or individuals who do not find it feasible, technically or economically, to install renewable energy systems in their localities could invest in the development of renewables in the bioregion. This would also help spur economic develop-ment outside cities and improve the quality of life for non-urbanites, acting as a strong disincentive for migrating to the cities. Large-scale implementation of RETs can be ensured through appropriate policy measures. Energy policies are often not made by city governments but are in the hands of the national government and this varies from country to country. One of the most successful policy tools for promoting renewable energy systems is the feed-in tariff. This encourages prosumption, helps overcome intermittent supply and at the same time reduces carbon emissions from the power plants. Having a feed-in tariff system will help in the uptake of renewable energy ventures, which are currently not common in Asian countries. In fact fixed feed-in tariffs have proven to be one of the most effective poli-cy actions for the promotion of renewable energy. A mandatory electricity utility quota for industries and public institutions, net metering and financial incentives like production tax credits and capital subsidies are other interesting options for policy makers. Without political support, however, renewable energy remains at a disadvantage, marginalized by energy price distortions.

73 Sustainable Urban Energy: A Sourcebook for Asia Target setting Info/ promo-tion Regulation based on legal responsibility & jurisdiction Operation of municipalinfrastructure Voluntary actions & as role model Urban Pur - chaseBuilding Demo Taxes Invest Grants Other Utility Land Other China BaodingBeijing Dezhou KunmingLianyungang Rizhao ShanghaiShenzhen Taipai City TianjinWuhan India Bhubaneswar Delhi CoimbatoreNagpur Rajkot Rep. of Korea Busan DaeguGwangju Jeju prov. Seoul Other Asia Hong Kong Iloilo CityKuala LumpurQuezon City Singapore Table 2.6 Selected Local Renewable Energy Policies Source: REN21, 2011b Sustainable Urban Agriculture þ Globally, two issues concerning local governments are the need to create a livelihood for the urban poor and the need for food security. Urban agriculture addresses both of these in a proac-

74 Sustainable Urban Energy: A Sourcebook for Asiative manner. It promotes energy-saving through local food production and is also sustainable. Prosumption in the food sector can be achieved by incorporat- ing urban agriculture into the city222s landscape. This can include green belts around the city, food production in city parks or specially allocated land, community gardens, vegetable patches at schoolyards or green roofs with edible plants. Rooftops for example comprise at least 30 per cent of a city222s total land area and provide a large surface area for food production. 6 Local water bodies like rivers and lakes can be turned into fish farms and municipal parks can accommodate beehives. Urban agricul-ture promotes energy-saving through local food production and is generally seen as sustainable. Urban agriculture is not a new concept: in the past most cities produced food within urban areas and on the urban periphery. In fact, at present, 15 per cent of the world222s food needs are met through urban produc-tion (Katz 2006), although over the last fifty years in most of the industrial world the practice has been largely abandoned. Restarting urban food production can have a series of benefits and we find plenty of model projects all over the world demon-strating this.Urban agriculture in Jinghong, China 251 UN-Habitat Bernhard BarthSustainable urban agriculture is a useful tool that will help in addressing cities222 problems in an innovative way. Cities will get greener, air quality will improve, and energy requirements will be reduced as food does not need to be transported over long distances, refrigerated and packed. Solid waste can be turned into valuable compost, and grey water can be reused for With the steep rise in the price of food on global mar- kets already leading to riots and starvation, the need for fundamental change is tragi- cally underscored. (UNEP, 2008b)

75 Sustainable Urban Energy: A Sourcebook for Asiaagricultural purposes. Restaurants, schools or public institutions may then be encouraged to buy food from local urban produc-ers. Cuban cities are good examples of what can be achieved if lo- cal authorities actively support urban farming. By 2003, urban agriculture provided 60 per cent of the vegetables consumed by Cuban city dwellers. Planting of several million trees (including fruit and nut trees) in and around Havana increased groundwa-ter recharge, improved water security and quality of water as well (Wolfe, 2005). Studies have shown that a city like London could produce about 30 per cent of all fruit and vegetable requirements within the city boundary, and do so by using only the currently abandoned and leftover space (Viljoen, 2011).Figure 2.13 Impacts and Interrelations of Sustainable Urban Food Systems Eating food Food growing Food tracing Food spaces Enironmental Releance Economic Releance Spatial Releance Social ReleanceAccess to (fresh) foodLocal + organic foodFood miles + end of oilIndustrialised food productionThe ecological footprint of citiesBiodiversitySoil toxicity + remediationWaste managementCO2 + other GHGAir + water managementTraining + educationFood growing suppliesEmployment + incomeLocal trade + food processingGreen(ed) housingLayered infrastructureUrban connectivityAccess to outdoor spaceBrownfield sitesGreenbelt + greenfieldAccess to natureSpatial diversityVisual amenityPublic perception of open spacePublic spaceLeisureNeighbourhood + local identity Ownership + agencySustainable urban lifestylePublic health + nutritionFood cultureLocal food consumptionAdapted from: Bohn & Viljoen Architects, 2002In order to be successfully implemented, Sustainable urban agri- culture needs to be incorporated in a city222s land use plan. A legal framework that allocates urban areas (such as idle land, under-used land, etc.) for food production will support the develop-

76 Sustainable Urban Energy: A Sourcebook for Asiament of urban agriculture. Building codes need to be adapted to reflect the actual structural contingencies for rooftop gar - dening. Institutions to conduct research on urban agricultural techniques, food processing and centres for training, dissemina-tion and soil testing need to be established. Creating a support infrastructure for urban farming that includes tool banks and input materials such as compost, seeds, organic fertilizers and pesticides will have to be supported. The unemployed can be trained in food related businesses. Financial mechanisms like start-up capital or special loan schemes need to be established. Public institutions can be encouraged to buy local produce by urban farmers and community supported agriculture initiatives need to be sustained. A cooperative relationship can be forged with the municipal waste collection system for collecting and composting organic waste to effectively close the material loop. Source: www.ecolife.com, accessed September 2011 Community supported agriculture (CSA) projects allow consumers to collectively support local farmers by committing to purchase their farm222s food products. This type of system provides many benefits to consum- ers and farmers alike: - Support local economy: Farmers receive a consistent, guaranteed income that is normally arranged before the hard work of growing season begins - Make community connections: Farmers and consumers get to know one another which fosters a sense of community on a local scale - Eat fresh produce: Rather than eating foods shipped from thousands of miles away, consumers are able to buy fresh, local food products - Learn about seasonal menus: Consumers become more aware of the types of foods grown and cultivated in their region which encourages a seasonal approach to preparing mealsUrban Agriculture helps sustain local economies while returning a larger share of the proceeds to the producers227reducing emissions from 223food miles224 at the same time. (UNEP, 2008b)

77 Sustainable Urban Energy: A Sourcebook for Asia Circular Economy - Closing the Loop2 . 3223We are making great progress, but we are going in the wrong direction.224 - Ogden Nash, American PoetA circular economy mimics nature222s ecosystem in attempting to transform waste products into a resource. It tries to find strategies and methods to minimize the negative impacts of the industrial systems on the environment. Therefore it is the exact opposite of the currently predominant linear economy in which materials are sourced, goods and services are produced and waste is discarded (Figure 2.14). The practices of circular economy can be applied to all sectors, be it the energy sector with co-generative systems, or the waste sector where material is recycled and reused, or the sanitation and water sector where waste water is reused and solid waste is composted. A circular system can be manifested in various ways, chief among which are the Eco-Industrial parks and Co-generation. Adapted from: www.ellenmacarthurfoundation.orgLinear Economy Circular EconomyTake > Make > Dispose Living Systems Technical & Biological Nutrients all mixed up Waste Technical Nutrients BiologicalNutrients

78 Sustainable Urban Energy: A Sourcebook for AsiaBox 2.10 Principles of Circular Economy Core principles of a circular economy are: 1. Reduce: to reduce the resource consumption and waste production as much as possible in the course of production and service so as to improve the efficiency of resource use. 2. Re-use: to use products more than once through repairing and renovating, to extend the circle of life as long as possible and to prevent products from becoming garbage prematurely. 3. Recycle: to change waste into resources to the fullest extent. Eco-Industrial ParkThe aim of an eco-industrial park is to make the waste of one industry into a valuable resource for another one, thereby im-proving material and energy efficiency and decreasing environ-mental emissions. This would also make companies more com-petitive as better waste management results in cost savings and a higher environmental and business performance. Virgin raw materials and energy used are reduced and replaced by wastes and by-products generated in the area. An Eco-Industrial Park can be defined as 223a community of manufacturing and service businesses seeking enhanced environmental and economic performance through collaboration in managing environmental and resource issues including energy, water and materials. By working together, the community of businesses seeks a collec-tive benefit that is greater than the sum of individual benefits each company would realize if it optimized its individual perfor - mance only224 (Lowe, 1998). Many governments in Europe have promoted these parks, which include chemical industry parks in Germany, and other parks in Europe such as Kalundborg (Denmark), INES (Rot-terdam), National Industrial Symbiosis Program (UK) and the Landskrona Industrial Symbiosis Project (Saikku, 2006). Republic of Korea has also launched an ambitious eco-industrial park initiative. This initiative links cleaner production and indus-trial ecology, seeking a comprehensive approach to improv-ing environmental, social, and business performance. This is an important initiative for the fast growing Asian economies. Careful planning and setting up designated areas for industries to sprout will be crucial for a more sustainable urban industry. Since Eco-Industrial Parks lay emphasis on local and regional economic development they offer an active role for local au-thorities in facilitation and land allocation.Eco-Industrial Parks repre- sent a promising strategy to promote sustainable industrial development and implement industrial ecology concepts. (GTZ, 2000)

79 Sustainable Urban Energy: A Sourcebook for Asia Steam Aquaculture greenhousehydroponic farming Resource Facility Paper mill Tyre recycling plant Ethanol & bio-fuels production Concrete plant Pharmaceutical industry Mini steel mill Other energyusers Non-ferrousmetal smelterUses recovered tyres in the production of Com-posite Rubber Products and Fuel - Specialty Products- Redi-Mix Processes Recovered Metals & Scrap to produce Steel and Rebar Recovers Aluminum, Copper, Brass & Precious Metals Utilizes recovered paper for recycled paper productsand cardboard - Energy Generation- Materials Recovery- Ash Processing Adapted from: www.energyanswers.com þ Granulated tyresWaste FibersSteam & Cellulose MaterialsWastewater for coolingRecovered Metals & ElectricityProduct & Packaging Waste and WastewaterSludge & wastewater for cooling Steam & electricitySteam & ElectricityWastewater for cooling Recovered Metals & ElectricityElectricity, Boiler AggregateTM & conditioned fly ash Municipal solid wasteElectricity Wastes Energy

80 Sustainable Urban Energy: A Sourcebook for Asia Eco-effectiveness moves beyond zero emission approaches by focusing on the development of products and industrial systems that maintain or enhance the quality and productivity of materials through subsequent life cycles. The concept of eco-effectiveness also addresses the major shortcomings of eco-efficiency ap - proaches: their inability to address the necessity for fundamental redesign of material flows, their inherent antagonism towards long-term economic growth and innovation, and their insufficiency in addressing toxic- ity issues. A central component of the eco-effectiveness concept (cradle-to-cradle) provides a practical design frame - work for creating products and industrial systems in a positive relationship with ecological health and abun - dance, and long-term economic growth. Against this background, the transition to eco-effective industrial systems is a five-step process beginning with an elimination of undesirable substances and ultimately calling for a reinvention of products by reconsidering how they may optimally fulfill the need or needs for which they are actually intended while simultaneously being supportive of ecological and social systems. Source: Michael Braungart, 2006 Co-generationCo-generation is defined as the sequential generation of two forms of useful energy from a single primary energy source. Typically, the two forms of energy are mechanical and thermal energy. Co-generation, also known as combined heat and power (CHP for short), captures heat, a by-product of electric-ity generation in a power plant, which can then be used for industrial purposes. When compared with a separate generator, it has the potential to save 40 per cent of energy (Figure 2.16). Electricity 30 45 HeatEnergy needs of a facility InputEnergy100Input forpowergeneration86Input forboiler54InputEnergy140 40% Potential for energy savingsHeat loss 25 Heat loss9 Heat loss 25

81 Sustainable Urban Energy: A Sourcebook for AsiaThermal power plants are major sources of electricity for Asia222s cities. The efficiency of conventional power plants is only about 35 per cent, while the remaining energy is lost. This loss in the conversion process is mainly heat (Figure 2.16). By utilizing this heat, the overall efficiency of a power plant can reach up to 90 per cent (Mohanty & Oo, 1996). Cogeneration offers energy efficiency, reduction of costs and the ability to reduce CO2 emissions. Small, natural gas powered electricity generators in industrial or residential areas can supply heat to factories, office buildings, and household clusters. This energy can be used for various purposes like heating or cooling a building, heating or cooling water and running absorption chillers for refrigeration and air-conditioning. This extremely efficient use of fossil fuels demands a co-ordi- nation of energy supply with local physical planning by city governments. In Scandinavian countries, cogeneration is used to heat buildings using the hot water that is produced during electricity production. In Finland222s cities over 80 per cent of the heat demand in buildings is met from community electricity production (University of Rochester, unknown). For places where cooling is required, the steam or hot water produced by the co-generation plant can be used to generate cold water by using a vapour absorption chiller. In the case of a District Cooling system, the cooling produced in the absorp-tion cooling units, either located in individual buildings or a centralized cooling unit, will be distributed through a chilled water piping network. District Cooling systems have been used for more than 40 years. In Japan, hundreds of such plants have been installed that act as high efficiency heat/cooling supply systems for central business districts. Figure 2.17 Integrated Cogeneration and District Energy Network Electricity Electricity Heat from CHP plantCentralized chilled water system Decentralized chilled water systemAdapted from: Mohanty, 2011

82 Sustainable Urban Energy: A Sourcebook for AsiaBox 2.12 Cogeneration and District Cooling Network for Bangkok Airport During the designing stage of the new international airport for Bangkok, a decision was taken to set up a Cogeneration and District Energy facility to reduce the overall energy consumption and improve the reli - ability of energy services. On the basis of the load calculations and optimization of the energy performance of the airport during the designing stage, it was estimated that 66 MW of electricity would be required to meet the overall energy demand of the airport, including 12,500 RT for cooling with a demand for 16 MW of electricity. The final configuration retained after the completion of the feasibility study consisted of 2 units of 22 MW gas turbine generators, two units of 42.5 T/h of heat recovery steam generators, and one unit of 12.5 MW back-pressure steam turbine operating with the steam generated from the waste heat of the gas turbines. The low-pressure steam exiting the steam turbines is piped to three different areas of the airport complex to be used for cooling in double-effect vapour absorption cooling units or for direct heating applications in the hotel and the catering building.Source: Mohanty, 2011

83 Sustainable Urban Energy: A Sourcebook for Asia Sustainable Transport Solutions2 . 4223A city is more civilised not when it has highways, but when a child on a tricycle is able to move about everywhere with ease and safety.224 - Enrique Pe361alosa, Former Mayor of BogotaTransport systems form the lifeline of economic and social de- velopment of cities - they enable economic, social and cultural exchange and connect urban centres to the bioregion and the rest of the country. Transport is the fastest growing sector in greenhouse gas emissions at a forecasted rate of 2.5 per cent yearly until 2020. Mitigating climate change will require drastic improvements in the sustainability of the transport sector (UNEP, 2010). However, our existing transport systems are a huge cost in terms of energy demand, air pollution, greenhouse gas emis-sions, congestions and traffic fatalities. This calls for a new paradigm that shifts towards implementing sustainable transport solutions. Systems that are low-energy and low-carbon intensive, emphasise quality of life and yet can cater to the needs of a modern society, need to be explored. With adequate investments into sustainable transport infra-structures, which include motorised and non-motorised modes, urban authorities can make a decisive change towards a higher quality of life and a lower carbon footprint. The paradigm shift calls for cities that are built for people rather than for cars and for cities that actively promote public transport systems instead of city highways and flyovers. Table 2.7 highlights possible inter - ventions by city authorities to improve urban transport systems.Some Asian cities have clearly shown that cities can be game changers and have thereby inspired new thinking on sustainable transport. (ADB, 2009)

84 Sustainable Urban Energy: A Sourcebook for Asia Reduced Traffic Speeds Shift Trip Time Shift Mode Shorter Trips Reduced Veh.Trips Reduced Veh. Ownership Congestion Reduction Transport Choice Road Safety Adapted from: GTZ, 2003 Shanghai flyover 251 Flickr_ming1967 Non-Motorized TransportTraditional urban and transport planning often neglects non- motorized transport. The emphasis is usually on improving and expanding infrastructure facilities for motorized transport, trying to improve connection, travel time and speed. But mobility plan-ning must include all modes of transport and should especially emphasise the non- or less polluting solutions. Non-motorized transport mainly refers to walking and cycling. It is the most sustainable and healthy way for individuals to travel. Scaling up non-motorized transport in urban areas results in

85 Sustainable Urban Energy: A Sourcebook for Asiaa lower per capita energy use, less dependency on fossil fuel, less air and noise pollution, a reduced carbon footprint and less traffic congestion and fatalities (Figure 2.18). Investing in infra-structure for non-motorized transport (cycle and walking lanes) is increasingly becoming popular in cities all over the world. But in many Asian cities pedestrians and cyclists are not provided with the appropriate infrastructure and facilities. And if facili-ties do exist, they are often poorly maintained or used for other purposes such as parking space for cars. This makes the use of non-motorized transport in many Asian cities not only challeng-ing but very often life threatening. City governments that make a commitment towards more sustainable development are taking up the low-carbon mobil-ity path. Besides the creation of the necessary infrastructure for cycling and walking, advocating non-motorized transports requires compact and smart town planning. Compact cities, where distances are kept short are more inviting to non-motor - ized transport solutions than urban centres in which distances are long. Specifically assigned cycling and walking paths may need to be shaded with trees, which can also act as small car - bon sinks (GTZ, 2009). Bike parking, specific traffic signals, de-congestion of existing roads, improved accessibility for cycling and walking along with the development of a safer road culture are mechanisms that will help in the uptake. Accessibility Safety NMT roadinfrastructureIncreases and improves affordable access to vital services and other transport modes through integrated networks Reduces/prevents congestion and emis- sions of air pollutants and GHGs through increased modal share of NMT Improves safety for all users by protecting vulnerable users through protected facilitiesNon-motorized transport modes have the unfortunate distinction of being over- looked by most tra035c plan-ners and economists. But they ful036ll an important function in all societies. (UNEP, 2008b)Adapted from: UNEP, 2010

86 Sustainable Urban Energy: A Sourcebook for Asia Cycle of walkable, bikeable citiesPeople-oriented transport planning Increased travel options Alternative modes promoted Liveable cities,smart growth Mixed-use, densedevelopment pattern Decrease vehicle use NMT & people oriented land-use planning Limited parking supplyFigure 2.19 Smart Mobility Planning Adapted from: UNEP, 2010 Space required to transport 60 people 251 Press Office City of Munster, Germany Public Transport SystemsPublic transport is a wide category that includes different means of transport such as buses, mini-buses, vans, metro and trams, taxis, rickshaws and three wheelers. In many Asian cities buses, mini buses and rail account for a big share of the public trans-port. In order to make these modes attractive for use, they have to be integrated with urban planning and with the wider region. Interconnectivity between different modes of public transport has also to be addressed. In addition the use of private motor - ized vehicles could be discouraged by means of higher road taxes, fees for parking, or higher registration fees for the vehicle (see chapter 4). Promoting public transport or non-motorized transport solutions will also result in the reduced need of wide and extensive road networks (Picture 2.3).Public transit is less energy- and carbon-intensive than automobiles. (UNEP, 2008b) Car Bus Bicycle

87 Sustainable Urban Energy: A Sourcebook for AsiaPublic transport reduces fossil fuel dependency. Buses, trains and trams are more efficient per passenger, than cars (Figure 2.20. In addition, lower traffic volumes will result in reduced road maintenance costs for cities and provinces. In cities with a high share of public transport, walking and cycling, the cost of transport for the community - expressed as a proportion of the urban GDP - is half that of cities where this share is low. For example, the cost of transport represents more than 12 per cent of the local GDP in Houston or Sydney, but only 6 per cent in Tokyo or Hong Kong (UITP, unknown). Developing public transport instead of investing in road infrastructure for cars will also help in the creation of more jobs (Figure 2.21). Public trans-port may also help in creating more cohesive communities as it encourages social contact. or highways Adapted from: AGO, 2006. Adapted from: UITP, unknownMegajoules per passenger - km Electric Train Electric Tram Diesel Train (V/Line) Diesel Bus Petrol Car 0 1 2 3 4 0 0 100 125 Roads or highways Public transport 0.15 0.2 3.7 0.04 0.28

88 Sustainable Urban Energy: A Sourcebook for AsiaBox 2.13 Urban Water Ways as Sustainable Transport Modes Urban waterways provide important transport infrastructure for freight transport, but also for public and private transport in some cities. Their importance and characteristics are very case-specific. In general, wa - terways are mainly affected by either a lack of water availability or by flooding. Where impacts are severe, certain waterways may have to be abandoned entirely or the construction of new waterways may become necessary.Source: GTZ, 2009

89 Sustainable Urban Energy: A Sourcebook for Asia Integrated Urban Planning 2 . 5223Our biggest challenge in the new century is to take an idea that seems abstract 221sustainable devel- opment222 and turn it into a daily reality for all this worlds222 people224. - Ko036 Annan, Former UN Secretary GeneralUrban planning decisions taken now can shape the well-being of citizens and direct urban growth for centuries. Planning has a decisive role to play in climate change resilience because it influ-ences activities that lead to GHG emissions and guides patterns of land-use as well as energy use. The built environment also shapes and directs the location and concentration of socioeco-nomic activities (Jia, 2009). Integrated urban planning rests on three pillars of sustainable development - economy, society and environment. It recognises that any urban development has to take these three parameters into account. This makes planning a highly complex activity. Environmental concerns such as land use, air pollution and the protection of water bodies have to be integrated with economic development concerns, such as the creation of jobs, the support of industry and commerce and the travel of people, goods and services while at the same time considering the needs and the well-being of the population. To meet these goals a paradigm shift in infrastructure develop- ment is required. Instead of expensive centralized systems, a more network based or decentralized approach is emerging. This may include clusters of towns within a city that have a high compactness and that have infrastructure services such as power generation, water facilities, food production and work-places in their vicinity. There is an increasing effort to become sustainable by increasing density, taking up mixed land use pat-terns, increasing energy efficiency, providing better infrastruc-ture services and also by encouraging more sustainable lifestyles for citizens. The challenges lay not so much in finding technical solutions but more in the financial, institutional, cultural and political factors involved. There have been a number of answers to meet these challenges including the New Urbanism move-ment, Smart Growth, the concept of Eco Cities and Regenera-tive Cities. Reorienting the transportation sector toward greater sustain-ability requires not only a di033erent mix of transportation modes, but also far-reaching changes in land use and land- use planning. (UNEP, 2008b)

90 Sustainable Urban Energy: A Sourcebook for Asia Smart GrowthMany environmental problems can be traced back to inefficient land-use practices and policies that encourage urban sprawl, which increases the need for transport, demand for energy (for heating and cooling purposes), and has higher infrastructure costs. Smart Growth is a response to these problems and can be summarized below. It refers to a city222s land-use practices that promote land-use patterns to reduce the amount of travel needed in order to reach goods or services. Smart Growth encourages high density development and compactness around commercial centres and urban transit nodes. Here are some tips for achieving Smart Growth: - Plan strategically. Establish a community 223vision224 which indi- vidual land use and transportation decisions should support. - Create more self-contained communities. Reduce average trip distances, and encourage walking, cycling and transit travel, by locating schools, shops and recreation facilities in or adja-cent to residential areas. - Foster distinctive, attractive communities with a strong sense of place. Encourage physical environments that crate a sense of civic pride and community cohesion, including attractive public spaces, high-quality architectural and natural elements that reflect unique features of the community, preservation of special cultural and environmental resources, and high stan-dards of maintenance and repair (GTZ, 2003) Comparison of compact city and urban sprawl 251 UN-Habitat, 2011b Denser cities and shorter dis- tances reduce the overall need for motorized transportation. 037ey also make alternatives like public transit, biking, and walking more feasible. (UNEP, 2008b)

91 Sustainable Urban Energy: A Sourcebook for Asia Smart Growth Urban SprawlEmphasis Density Growth pattern Land Use Mix Transport Street Design Planning Process Public Space Accessibility 226 to goods services, and activities Higher Density, clustered activities Infill development Mixed Local, distributed, smaller, walking access Multimodal transportation and land-use patterns that support walking, cycling, and public transportation Highly connected roads, pavements and paths allowing more direct travel by motorized and non- motorized transport modes To accommodate a range of activities with street calming Planned and coordinated between juris- dictions and stakeholders Emphasis on streetscape, pedestrian areas, public parks, and public facilities Mobile-physical movement, particularly by car Lower density, dispersed activities Lower density, dispersed activities Single use, segregated Regional, consolidated, larger, requiring car access Car oriented, poorly suited to walking, cycling and public transportation Hierarchical road network with many unconnected roads and walkways, and barriers to non- motorized transport Designed to maximize vehicular move- ment throughout Either unplanned/little coordination, or inappropriately planned to local condi-tions (e.g. US) Emphasis on the private realm of shop- ping malls, gated communities, private clubs Table 2.8 Smart Growth Compared with Urban Sprawl Eco-CitiesEco-cities are urban centres that orient themselves on certain sustainability goals by implementing sustainable urban tech-nologies. They follow an ecological approach to urban design where cities are conceptualized as an eco-system with circular physical processes for resources like energy, water and food. They are dedicated to minimizing material inputs and at the same time to reducing material outputs in the form of waste, heat, air pollution and polluted water. An eco-city aims at not consuming more resources than it can produce, not produc-ing more waste than it can assimilate, and not polluting the environment. Its inhabitants222 ecological impact reflects planetary supportive lifestyles; its social order reflects fundamental prin-ciples of fairness, justice and reasonable equity (Eco-City Build-ers, 2010). Eco-cities are an implementation of smart growth by promoting high density instead of urban sprawl development; A sustainable city or an eco- city is an entity developed to minimise its resource requirements and the waste output created by its inhabit- ants. (Woods Bagot, 2008)

92 Sustainable Urban Energy: A Sourcebook for Asiastrong incentives are given to use public transport or non- motorized transport while at the same time the use of private vehicles is discouraged. Renewable energy systems and urban and peri-urban agriculture are integrated elements of eco-cities. In eco-cities people can live healthy and economically produc-tive lives without affecting the environment negatively. Regenerative CitiesWhile eco-cities aim at minimizing their negative impact on the environment, the concept of regenerative cities takes on a whole new perspective in trying to restore environmental sys-tems and to contribute to eco-system services in a positive way. This addresses the relationship between cities and their hinter - Bio fuel Biogas Bio fuel Bio solids Purified Waste Water Purified Waste WaterHammarby Thermal Powerstation Lake Hammarby Sjo Filter Treatment Lake Malaren / Drinking Water Plant Hogdalens Combined Heating and Power Plant Equilizer Sjostadens and Hen-riksdals waste water treatment plant The SeaDistrict Heating & Electricity District Heating - District coolingHazardous & electrical WasteStreet Storm Water (Rainwater) Storm Water Waste Water BiogasBiosolidsOrganic WasteDrinking WaterRecycling - Paper Boxes, Glass, TinsNew PackagingCombustible Waste Friendly Electricity Adapted from: www.hammarbysjostad.se þ Energy Waste Water

93 Sustainable Urban Energy: A Sourcebook for Asialand and even with the distant territories that supply them with goods and services. This can include the support of reforestation in the hinterland to increase its capacity for carbon seques-tration or the support and promotion of organic agriculture through economic ties. Closing the material loop in providing the hinterland with valuable input material for agriculture like grey water or compost from solid waste is another characteris-tic of a regenerative city. Regenerative cities are envisioned as zero waste cities, high energy conserving and effective and as centres of prosumption, taking care of a good percentage of their energy and food needs. 221Creating regenerative cities thus primarily means one thing: Initiating comprehensive political, financial and technological strategies for an environmentally enhancing, restorative relationship between cities and the eco-systems from which they draw resources for their sustenance222 (World Future Council, 2010). Green Sustainable Eco-efficiency Business as Usual Sees humans, human developments, social structures and cultural concerns as an inherent part of ecosystems. Questions how humans can participate in ecosystems usingdevelopment to create optimum health. Seeks to create or restore capacity of ecosystems and bio-geological cycles to function without human manage-ment. Understands the diversity and uniqueness of each place (socially, culturally and environmentally) as crucial to the design. Sees the design process as ongoing, indefinite and participatory Does not challenge current pro-duction methods orconsumption patterns that have negative environmental impact. Minimizes energy use, pollution and waste (termed 222less bad222design. Acheives neutral environmental impact and maximum efficiency. Little or no consideration is given to the environmental impact of the design. Designs generally aim to meet minimum legal requirementsfor the lowest first-cost price. A rapidly expanding segment of business-as-usual is 221green222 and moving towards sustainable. Adapted from: World Future Council, 2010

94 Sustainable Urban Energy: A Sourcebook for AsiaBox 2.14 The 2000-Watt Society Today 2000-Watt is the average per capita consumption world-wide, but there are enormous disparities between developed and developing countries. The Vision of a 2000-Watt society was formulated in Switzer - land by the Federal Institute of Technology in Zurich. It means the reduction of energy consumption by two thirds for Switzerland. It calls for a reduction of energy consumption and simultaneously for a rise in energy efficiency, substituting fossil fuels with renewable forms of energy, adopting a more sustainable way of life and rethinking current business practices. Changes in the construction sector through the implementation of solar passive design, zero emission buildings and fundamental changes in the road, transport and freight sector are envisioned. This should be achieved by adopting already existing technologies and without com- promising present quality of life. The most significant change according to the 2000-Watt society initiatives will have to occur in human behaviour.Source: Stulz & L374tolf, 2006

95 Sustainable Urban Energy: A Sourcebook for Asia Emerging Technologies for Sustainable Urban Energy2 . 6223I222d put my money on the sun and solar energy. What a source of power! I hope we don222t have to wait till oil and coal run out before we tackle that.224 - 037omas Edison (18472261931)We have explored how existing technologies can be used to make cities more sustainable. At the same time new technolo-gies are emerging that promise a decisive shift towards a more sustainable future. However, technologies alone are not the answer; they are the hard solutions for the soft issues. The hard issues however, as seen in the example of the energy pyramid (Figure 2.4), need soft solutions such as behavioural change and effective policies based on an integrated vision towards sustainability. New technologies can bring a sustainable future only if the right policy environment supports them. One could even name awareness and lifestyle change as the single-most promising technology for a sustainable urban future. New technology innovations can help in bringing about chang-es for the better in certain ways: 1. Efficiency in existing systems as in buildings, electric appli- ances, vehicles, and production processes. 2. Emerging technologies offer technological alternatives to processes that consume fossil fuels. Governments in developing countries have traditionally been seen as 223bottlenecks224 to emerging technologies. If the gap be-tween technology and effective policy making could be bridged by mutual effort, cities would much benefit. This gap could be bridged by more than one way:- Rewarding and recognising innovators- encouraging experimenting at low cost - enabling research and development Governments should also motivate collaboration between local players and international partners who will enable local compa-nies to strengthen their knowledge, expertise and market reach. Necessity has always been the mother of invention. Scarcity drives technology. (Vattenfall, 2009)

96 Sustainable Urban Energy: A Sourcebook for Asia Smart Grid 226 Smart Appliances 226 Smart HomeA sustainable urban energy system will need low carbon tech- nologies on the supply side, and an efficient infrastructure and more efficient appliances at the end-user side. The next wave of technological innovation will be created around smart applica-tions such as smart appliances, smart homes and smart cities. These are technologies that employ digital monitoring systems to improve the efficiency of power transmission and consump-tion and give the user detailed information on their consump-tion. Smart grids may provide compelling solutions for the intermit- tent power supply by helping to balance variable power genera-tion and demand. They can also help by being more efficient in transmission and distribution than the current systems and thereby provide solutions for thermal storage technologies. How does this work? Smart Grids may be paired with smart appliances or even a smart home, which respond to varying electricity supply and prices. That means a washing machine can be programmed in such a way that it will only start operating when there is plenty of power in the grid or when the price is under a certain threshold. Households, offices or factories would program smart meters to operate certain appliances when power sup-plies are plentiful. Utility companies would 226 for example, be tweaking thermostat temperatures 226 to cope with spikes in demand (WWF, 2011). Smart Grids reduce peak demand by allowing customers, manually and/or automatically, to reduce and/or shift the time of their consumption with little impact on operation and lifestyle. This permits minimization of additional investment in power plants and consequently lowers prices to end-users (IEA, 2010).037e smart grid uses digital technology to communicate with facilities and appliances to understand usage patterns and deliver electricity more e035ciently, thus helping to save energy, increase reliability, and reduce costs. (ABC, 2010)

97 Sustainable Urban Energy: A Sourcebook for Asia Offices Houses Disturbance in the grid Isolated microgrid Central power plant Industrial plant Wind farm Solar panels Execute special protection schemes in microseconds Use can be shifted to off-peak times to save money Can shut off in response to frequency fluctuations Detect fluctuations & disturbances & can signal for areas to be isolated Energy generated at off-peak times could be stored in batteries for later use Energy from small generators & solar panels can reduce overall demand on the gridFigure 2.24 Smart Grid Adapted from: WWF, 2011 Vehicle to GridOne of the main challenges of renewable energy systems such as solar and wind is the intermittent supply from these systems. Solar systems do not produce electricity at night and wind

98 Sustainable Urban Energy: A Sourcebook for Asiaturbines produce more energy during high wind regimes. These systems require innovative mechanisms for capacity regulation and grid connected storage capacity.Vehicle to grid 251 Rocky Mountain Institute, 2008One possible solution to this intermittent power supply prob-lem is through electric vehicles. These have a battery system and a charger, which can be made bi-directional allowing the vehicles to feed into the grid while not in use. Battery recharge takes only a couple of hours and electric vehicles are generally used for a small portion of the day. This provides some flex-ibility about when electric vehicles are charged or discharged. They have the capacity to store energy and feed it back into the grid at peak times when additional energy is required and can thus help in stabilizing the grid. This is also a potential source of income for vehicle owners, since the power fed back can be metered and result in payments. Crucial for the advance of vehicle-to-grid technologies are improved battery systems, an appropriate infrastructure such as smart grids, public plug-in stations as well as a critical mass of vehicles that join the initia-tive. Solar 037ermal StorageSolar thermal power plants gather heat from the sun and store energy gained for hours and sometimes for even days. They have enough power to boil water into steam to run a turbine and generate electricity. This has the advantage that energy can be stored till it is required during peak demand period. For example, Gemasolar in Spain has a reflective surface of 110 square feet that follows the Sun. Its thermal storage system is able to retain up to 99 per cent of the heat for a period of 24 Success is achievable through existing proven technologies and appropriate new technol- ogies. (World Bank, 2010)

99 Sustainable Urban Energy: A Sourcebook for Asia Solar thermal storage 251 www.gotpowered.com Solar Shingles Rooftop Wind TurbinesSolar Shingles are based on photovoltaic (PV) technology. These look like roof shingles but have the capacity to produce power. They are said to be more effective than solar panels, absorb more light and are at the same time durable enough to be used as roofing material. They provide the same production and weather shedding effects as regular roof shingles. Rooftop wind turbines or small-scale wind turbines may turn hours. It supplies clean and safe energy to 25,000 households and reduces carbon emissions of over 30,000 tonnes per year. Solar shingles 251 UN-Habitat/ Sebastian Lange

100 Sustainable Urban Energy: A Sourcebook for Asiaout to be a promising solution for sustainable energy produc- tion in the near future. The benefits of a home wind system are an independence from the grid and a relative short payback period (about 5 years). The optimum amount of power that can be generated from rooftop turbines can typically provide up to a third of an average house-hold222s energy requirements. Rooftop wind turbines 251 www.energy-green.net AmbiatorIt is based on thermodynamic principles to produce cool-ing without mechanical compression and uses only minimum electricity. The ambiator works on the principle of evaporative cooling and is particularly effective in locations with low ambi-ent humidity. It can produce cool air at a fraction of the energy input compared to conventional refrigeration cooling. Ambiator 251 www.thomex.com

101 Sustainable Urban Energy: A Sourcebook for Asia Solar Window BlindsSolar window blinds have a dual function. They can keep the sunlight out in order to keep interiors cool and at the same time they can convert light into electricity. The blinds have a solar PV film on top that enables them to produce electricity, which can be used to power small appliances and gadgets. Solar window blinds 251 www.yankodesign.com

102Good Practices Good or best practices refer to 223practices that result in change or improvements to production, resource usage, governance and use of new technology224. They are used to demonstrate what works and what does not, and to accumulate and ap-ply knowledge about how and why they work in different situations and contexts (Roberts, year unknown). Good practices cannot be applied to all cities without considering the country, level of development, culture and lifestyle of its people, climate and other sensitivities. If good practice approaches for urban development are to become more widely applied in Asian cities, local governments must educate citizens, including their own employees and the business community about the need for change, as well as the improved approaches to urban management involving the adoption of good practices. This most certainly will imply a change in institutional culture (Roberts, year unknown). The following pages illustrate some good practices that authorities at the city and country level have used to make the best possible use of their areas, and many a time to transform them. 03.

103 Sustainable Urban Energy: A Sourcebook for Asia Urban Planning 3.1Kronsberg is an eco-district situated in the city of Hannover, Germany, which is built on 1,200 hectares on the city outskirts and planned for 15,000 inhabitants. Emphasis was laid on low land occupancy, by means of high-density construction. A direct light rail links the district to the city centre; streets are designated for cycling throughout the district and a dense layout of footpaths offer an attractive alternative to private motorized transport. Almost 300 new jobs have been created in the neighbourhood with the objective of keeping commut-ing at a minimum. Ecological standards for developers were defined for energy, construction waste, soil management, and water and nature conservation. For the energy sector, the goal was to reduce the carbon footprint by 60 per cent compared to the national level through measures for electricity saving, innovative building and renewable energy using solar PV and wind (Rumming, 2007). Eco-District Kronsberg, Germany Public transport in Hannover 251 Region Hannover

104 Sustainable Urban Energy: A Sourcebook for Asia Energy E036ciency3.2Heat generated from the production of electricity can be cap- tured and used for day-to-day needs. In Finland, an important method of heating buildings is by hot water produced during electricity production and piped around whole districts, pro-viding both heat and hot water. This extremely efficient use of fossil fuels demands a coordination of energy supply with local physical planning, which few countries are institutionally equipped to handle. Heat obtained in generating electricity is now used for heating the city instead of discarding it into the sea. The system currently serves more than 91 per cent of all Helsinki222s buildings. The efficiency of energy supply has been raised from 40 per cent up to 80 per cent in Helsinki. In an average power station, for example, only around 35 per cent of the fuel burnt (coal, oil, etc.) is converted into electricity, the remainder being lost to the atmosphere, rivers or the sea, as waste heat. Combined heat and power plant stations (CHPs) on the other hand capture most of this waste heat, raising the overall efficiency to between 75 and 90 per cent (Pierce, 2004). The heat obtained can also be diverted to industries for their manufacturing needs. 037e Energy E036cient City, Helsinki, Finland Pipes 251 www.dreamstime.com

105 Sustainable Urban Energy: A Sourcebook for AsiaThe European Commission, along with the Danish Energy Agency has funded the development of an energy-positive house of 600 sq. metres in Denmark. As the name implies, it intends to produce more energy than it consumes. It is made up of different individual components, each having proven its efficiency. The house functions both as a solar collector and a greenhouse. Micro generation technology and low-energy building techniques such as passive solar building design, insula - tion and careful site selection and placement also help achieve positive energy. Energy-Plus-House, DenmarkThe house faces south, helping to reduce the energy needed for heating the building. The building has a glass fa347ade with 20 cm gap between two layers of glass. This is filled with small poly-styrene beads, which insulate the house at night and in winter. During summer these work as shading in the daytime, making itpossible to control the indoor climate. Heat pumps inside the building condense moist air that is subsequently used for water - ing the plants. Energy plus house 251 www.folkecenter.net Energy plus house 251 www.folkecenter.net

106 Sustainable Urban Energy: A Sourcebook for Asia Renewables (City Initiatives)3.3The solar cities programme is an initiative of the Government of India to develop around 60 solar cities during the 11th Plan period (2007-2012). The objective of the programme is to empower urban local governments to address energy chal-lenges at the city level. Cities willing to develop a master plan that aims at reducing at least 10 per cent of demand for fossil energy sources (5 per cent from energy efficiency and conserva-tion measures and 5 per cent from renewable energy sources) are recognized as solar cities. Cities demonstrating high level of political commitment and administrative leadership will be provided financial assistance:- To prepare a Master Plan that includes assessment of the cur - rent energy situation, future demand and action plans; - To build capacity in the Urban Local Bodies and create aware- ness among all sections of civil society; - To involve various stakeholders in the planning process; and- To oversee the implementation of sustainable energy options through public - private partnerships. Solar cities will focus on popularizing renewable energy proj-ects/systems/devices such as solar PV systems including building integrated photovoltaic systems, kitchen waste based plants, solar water heating systems, solar cooking systems, solar steam generating/ drying/air heating systems, solar concentrators for process heat applications, solar air-conditioning, power projects on methane recovery from Sewage Treatment Plants (STPs), biomass gasification based systems, biogas, wind, etc. Solar Cities Programme, India Solar panels 251 UN-Habitat/ Sebastian Lange

107 Sustainable Urban Energy: A Sourcebook for Asia Ride the Wind Project, Calgary, Canada Lease and Hire of Solar Panels, Australia The City of Calgary222s Ride the Wind Project was launched in 2001. It is the first wind-powered public transit system in North America. All 100 cars are 100 per cent emissions free and run on wind energy. In addition, thanks to the use of massive awareness programmes, the city has managed to increase ridership in its transit system - ridership has soared by 33 per cent over the past five years while at the same time the city222s population rose by 15 per cent. C-Train ridership alone shot up by 73 per cent during the same time period.7 This initiative of Calgary is recognized as the first wind powered public transit system in North America and it has contributed to the reduction of greenhouse gas emissions by 26,000 tonnes of CO2 annually (Archdeacon, 2008) Government intervention can prove helpful in the uptake of expensive renewable energy investments by low-income neighbourhoods. It can help with installations of wind energy for communities, including offshore wind parks to reduce CO2 emission, new solar panels for existing buildings and houses, 7 www.bestpractices.org/bpbriefs Calgary transit 251 Flickr_Hobolens

108 Sustainable Urban Energy: A Sourcebook for Asiaand solar water heaters for households in regions having good sunlight. Even though these options have high up-front costs, they offer significant potential for carbon abatement. There can be innovative ways of financing such investments. In Australia,for instance, households have the option of renting their roof-tops to a company, which installs the solar system and then feeds the excess electricity generated into the grid (Energy Mat-ters, 2011). Having a feed-in tariff system will help in the uptake of renewable energy ventures, which are currently not common in Asian countries. In fact fixed feed-in tariffs have proven to beone of the most effective policy actions for the promotion of renewable energy. A mandatory electricity utility quota for industries and public institutions, net metering and financial incentives like production tax credits, capital subsidies are other interesting options for policy makers. Solar panel 251 UN-Habitat/ Bernhard Barth Auroville, a small international community of about 2000 inhabitants in South India was meeting its electricity require-ments by purchasing fossil fuel based electricity, supplied by the State power utility. But for a township that aspires to base its energy requirements on renewable energy, this solution was unsustainable 226 particularly as lignite, the fuel used for power generation, has a large polluting potential. A few Aurovilians set up a private company to serve the future energy and water requirements of Auroville. Two wind turbines that feed electric- ity into the grid were installed. Another wind turbine is envi-sioned to run a desalination plant to produce 1000 cubic me - Wind Energy for Auroville, India

109 Sustainable Urban Energy: A Sourcebook for AsiaShanghai city built its first wind power station in 2003 and by 2008, it had added wind turbines to a total of 39 megawatts in capacity, producing enough electricity to power an estimated 39,000 households. By 2020 Shanghai plans to have a total of 13 wind farms with an installed capacity of a 2.1 gigawatts providing electricity to more than 4 million households. Among the wind farms to be added is a major offshore wind project, Dongahi Bridge Wind Farm, with 102 megawatt of installed capacity. Dongahi Bridge Wind Farm is the first offshore wind farm in China, and the world222s first major offshore wind farm located outside of Europe. It is capable of providing about 1 per cent of the city222s total power production; and is expected to cut coal use by 100,000 tonnes per year and thereby reduce carbon emissions by 246,000 tonnes annually. O035shore Wind Turbines for Shanghai, Chinaters of drinking water per day, which would serve the water needs of 3,300 people. Revenue received from selling the electricity to the grid is donated to the Auroville Township and will be invested in installing more renewable energy systems (Carel, 2009). Windmill 251 IUTC

110 Sustainable Urban Energy: A Sourcebook for AsiaA 223megasolar224 large-scale solar power plant with an output of 10 MW has been installed in the Osaka Bay waterfront. The plant222s total area expands to approximately 21 hectares with some 74,000 thin-film silicon solar PV panels installed. A total power generation of 11 million kilowatt-hours a year will result in annual carbon dioxide emissions of about 4,000 tonnes. Barbados, an island state in the Caribbean has come up with a National Strategic Plan for 2006-2025 to decrease its reliance on imported fossil fuel by increasing the country222s renewable energy supply. The focus is particularly on raising the number of installed solar water heaters by 50 per cent by 2025. Solar wa-ter heaters are now a widely used renewable energy technol-ogy in Barbados, with installations in nearly half of the island222s dwelling units. Barbados has around 91,400 dwellings and by 2008, approximately 40,000 solar water heaters were in opera- tion - 75 per cent of which represent domestic installations. Their growing presence in this island nation illustrates how a re-sourceful initiative can both promote renewable energy systems and stimulate economic growth. Solar Power Osaka, Japan Solar Water Heater, Barbados Island Solar power Osaka 251 www.osakacity.org Source: www.unep.org

111 Sustainable Urban Energy: A Sourcebook for AsiaTokyo performs reasonably well regarding carbon emissions and energy efficiency. The city222s authorities initiated their own mandatory CO2 cap and trading system as part of the city222s climate strategy. In order to reduce urban CO2 emissions, the Tokyo Metropolitan Government introduced a cap-and-trade programme in April 2010 that covers large office buildings, commercial establishments, and industrial facilities. All organ-isations that use the energy equivalent of 1,500 litres of oil an-nually for fuel, heat and electricity are required to participate. The immediate target for each organization is a 6 per cent re-duction in emissions (from their average level of emissions be-tween 2007 and 2010) by 2015. In the following five years an additional 17 per cent reduction is targeted. Organizations that achieve higher emissions reductions than targeted are allowed to sell carbon credits. The city says that the system is unique because it is the first to cover all major buildings, including of-fices, hospitals, universities and government buildings. Tokyo is also trying to encourage the adaption of such schemes at the national and international level. 037e First Cap and Trade System in Asia, Tokyo, Japan Solar power 251 www.solarinthecity.net Tokyo, Japan 251 Flickr_One Finger Snap

112 Sustainable Urban Energy: A Sourcebook for Asia Buildings3.4The Auroville Earth Institute in Auroville (India) has been exten- sively researching and promoting earthen blocks as building material. This technology has been found to be both cost-effective and energy efficient. The main goal is finding ways to minimize the use of steel, cement and reinforced cement concrete (RCC) by introducing composite blocks (earth, fibres and stabilizer). The Institute is also researching 223homeopathic224 milk of lime and alum as an alternative to cement, and alterna-tive water proofing with stabilized earth. Using energy in more sustainable and efficient ways can have a major impact on mitigating climate change. One of the ways to use energy more efficiently is through sustainable building and construction. Harare, Zimbabwe, came up with an innova-tive ventilation system, based on the self-cooling mounds of African termites. The Eastgate Centre, a shopping complex and office block in downtown Harare, has been designed to be ventilated and cooled entirely by natural means. It stores heat Auroville Earth Institute, India Sustainable Building and Con- struction, Harare, Zimbabwe Auroville, India 251 www.earth-auroville.com

113 Sustainable Urban Energy: A Sourcebook for Asiain the day and during the evening and night the warm internal air rises and is vented, drawing in denser cool air at the bottom of the building. This 221passive222 cooling system replaces artificial air-conditioning entirely. Compared to conventional buildings, the Centre decreased its energy use by 10 per cent, saving 3.5 million dollars because no air-conditioning system had to be adopted (Doan, 2010). Contrasts 251 www.inhabitat.com From 2016, new homes in England will have to be built to level 6 of the Code of Sustainable Homes, as 221zero carbon homes222. The exact definition of 221zero carbon222 is yet to be decided but it is likely to require high energy efficiency standards (with energy demand for space heating expected to be around 40 kWh/m2, compared to an average of around 200 kWh/m2 in the existing stock), as well as on-site or off-site renewable energy generation for all building-related energy demand (e.g. lighting, ventilation). The involved administrations are also introducing zero carbon building standards. By 2030, one can thus expect a stock of around 2-3 million new homes built to zero carbon standards, primarily driven by the demand for extra dwellings (Morikawa, 2000). The BRE site in Southwest England is reportedly the first house to achieve Level 6 benchmark under the Code for Sustainable Homes. BRE222s zero-carbon home includes solar photovoltaic panels, biomass boiler and a 221wind catcher222 (E-Architect, 2011). Zero Carbon Homes, England

114 Sustainable Urban Energy: A Sourcebook for AsiaA new credit in the U.S. Green Building Council222s LEED rating system could boost the use of third-party verified products in green building projects. The Certified Products credit, which was released in June 2011, gives points to projects in which at least 10 per cent of non-structural products are environment-friendly as certified by the relevant associations. The credit benefits manufacturers of environment-friendly products and encourages more product-makers to seek out third-party certifi - cation and verification services. It would also give architects a reference to find recognized products (Stroud, 2011). Credit for Green, USA Zero carbon homes 251 www.inhabitat.com 251 www.thinkgreenliveclean.com

115 Sustainable Urban Energy: A Sourcebook for Asia Transport3.5 Telecentres: Changing the Way People Work, Chula Vista, USA Work from Home Policy in Corpo-rate Houses, IndiaCities around the world are trying to address the problems of the impact of automobiles on the urban environment. Energy consumption, climate change, air pollution and the rising cost of fuel are forcing local authorities to focus on reducing emissions and slowing down global warming. Chula Vista, a small city with a population of 150,000, has responded to this through the concept of 223Tele-Commuting224 as part of its Carbon-dioxide Reduction Plan. Instead of commuting to work, residents can use their 223Neighbourhood Telecentres224 which are equipped with computers, modems, telephones and other office support services to complete normal work tasks. Doing so reduces automobile trips, traffic congestion, energy con-sumption and air pollution, promotes a better quality of life by providing a workplace closer to home and could also improve productivity (UN Habitat, 2008). Today many companies in the IT sectors are offering the option to work from home, thereby reducing commutes and adding more flexibility to the location of work. When undertaken by a large number of workplaces, this results in huge reductions in number of miles travelled, and the corresponding carbon emissions. A study by Nairn (2007) analyzed the environmental benefits of a 5 per cent reduction in daily commuting travel. If 5 per cent of people were to work from home using broad-band, this would result in an average of 567 km less travel per vehicle and a carbon emissions reduction of 159 kg CO2-e. Using the Internet to work from home does indeed result in significant carbon emission reductions (Baliga, Hinton, Ayre, & Tucker, 2009).

116 Sustainable Urban Energy: A Sourcebook for Asia Improving Walking and Cycling In- frastructure in New York City, USA More than 50 acres of road space in New York City (NYC) have been reclaimed from traffic lanes and car parking lots to meet the goals of long-term sustainability. After decades of car-oriented policies, the NYC Department of Transportation has succeeded in installing over 322 km of new bicycle lanes, and more than 6,000 bicycle racks, and more than two dozen bicycle parking shelters resulting in a 45 per cent increase in bicycle commuting (NYC Department of Transportation 2009). Walking and cycling infrastructure in New York 251 www.ecovelo.info In Times Square, after a century of accommodating car traf-fic, the city adopted a strategy of taking small nibbles of street space away from cars until reaching a point of noticeable change. The initial street reclamations were done by using co-loured paint on asphalt, followed by permanent reconstruction. The city also launched a Select Bus Service with advanced fare collection, dedicated lanes and signal prioritization (Replogle & Kodransky, 2010).Paris V351lib, FranceThe Paris V351lib, which combines the French words for bicycle (v351lo) and freedom (libert351), and has revolutionized bicycle shar - ing and showcases a new kind of individualized mass transit system. The design is already being copied in cities like Hang-zhou, China (any many other Asian cities). V351lib solves the

117 Sustainable Urban Energy: A Sourcebook for Asia Public bicycles in Paris 251 UN-Habitat/Bernhard Barth problems of bicycle storage, maintenance and parking. City authorities saw an opportunity to offer advertising space to JC Decaux in exchange for management of the system. Approxi-mately 4,000 car parking spaces were replaced with 1,451 V351lib stations that can hold 20,600 public bicycles for hire. Users pay a small fee to rent a bicycle and can return it to any station around the city. The company shuttles bicycles between stations to maintain a balance in the system and assures there are enough available bicycles at every station. A survey of us-ers found that 15 per cent of V351lib trips had shifted from car travel. V351lib users can hire a bicycle at any time of the day or night, which is a good complement to the metro that closes around midnight. To support an increase in cycling, Paris built nearly 400 km of new bicycle lanes and also increased general bicycle parking facilities (Replogle & Kodransky, 2010). Bicycle Sharing in Hangzhou, ChinaHangzhou, on China222s east coast, borrowed the model used by cities worldwide to build a biking culture: bicycle sharing. Fifty thousand bikes are available to rent at 2,000 service stations; the stations are positioned to link bikes with public transit. The stations are convenient, located every 300 metres, and the bikes are cheap. Trips under an hour are free, while those of one to two hours cost 1 Yuan (US$0.15). The bikes are rented 250,000 times each day, avoiding some 62,000 trips by car.

118 Sustainable Urban Energy: A Sourcebook for Asia Integrated Transport and Public Space Planning, Seoul, Republic of Korea Under the leadership of Mayor Lee Myung Bak, a 6.4 km elevated highway that once covered the Cheonggyecheon River in the centre of Seoul was replaced in 2005 with a riverfront park, high quality walkways and public squares. Removing the road cut traffic congestion in the area. The public responded so positively that 84 additional elevated roadways have been short listed for demolition. The city government also retrofit-ted 58 km with exclusive bus lanes, and added more than 100 additional bus lanes as part of a broader initiative to improve all aspects of Seoul222s transportation system. Bicyclists Hangzhou 251 Flickr_Gwydion Seoul, Republic of Korea 251 UN-Habitat/ Bernhard Barth

119 Sustainable Urban Energy: A Sourcebook for AsiaCommuting Tokyo 251 Flickr_Arjan Richter Rail Centric City Development, Tokyo, JapanCompared with the American cities the level of personal gaso- line use in Tokyo is fairly moderate. This is due to the intensive use of public transport such as rail and subway transport. In 2001, 56 per cent of the total trips in Tokyo were made by trains and subway, 7 per cent by bus and 3 per cent by taxi. The extensive development of a complimentary rail/subway net-work within the Tokyo metropolitan area supports city dwellers222 mobility. The route length of total rail/subway network in Tokyo metropolitan area reached 1,003 km in 2004 226 by far the larg-est in the world. Tokyo222s rail network also extends to the sub-urbs and satellite cities, making it easy for commuters to take public transport instead of private vehicles. Suburban trains in Tokyo are carrying more than 3 million passengers a day to the central business areas. For Tokyo dwellers, accessibility to rail means accessibility to their work as well as their leisure. In fact, a Tokyoites222 decision on where to live largely depends on acces-sibility to rail. Source: Siemens AG, 2011

120 Sustainable Urban Energy: A Sourcebook for Asia Industry and Commerce3.6The aim of an eco industrial park is to decrease the amount of waste, thereby decreasing environmental emissions and improving material efficiency. This would also make companies more competitive, as better waste management results in cost savings and a higher environmental and business performance. Virgin raw materials and energy use are reduced and replaced by waste and by-products generated in the area. Emissions are also reduced. And the biodiversity of the area is cherished. The social benefits in the area include creation of more jobs and improvement in working conditions. Attention is paid to the to-tal well-being of the community. Many governments in Europe have promoted these parks, these include Chemical industry parks in Germany and other parks in Europe such as Kalund-borg (Denmark), INES (Rotterdam), National Industrial Symbiosis Program, NISP (UK) and the Landskrona Industrial Symbiosis Project (Sweden) (Saikku, 2006). This would be an important initiative in the fast growing Asian economies. Careful planning and setting up designated areas for industries to sprout will be crucial in helping the nations achieve their carbon targets. At a lifestyle level, eco villages are another example well worth mentioning. Eco Industrial Park Ulsan Eco-Industrial Park 251 Ulsan Eco-Industrial Park

121 Sustainable Urban Energy: A Sourcebook for Asia223Industrial symbiosis224 is a related concept in which companies in a region collaborate to utilize each other222s by-products and also share resources. In Kalundborg, Denmark, a symbiosis network links a 1500 MW coal fired power plant with the com - munity as well as with other companies. Surplus heat gener - ated from the power plant is used to heat local homes and a nearby fish farm, whose sludge is then sold as fertilizer. Steam from the power plant is sold to Novo Nordisk, a pharmaceutical and enzyme manufacturer, and to a Statoil plant. This reuse of heat reduces the amount of thermal pollution discharged to a nearby fjord. Additionally, gypsum, a by-product from the pow - er plant is sold to a wallboard manufacturer. Almost all of the manufacturer222s gypsum needs are met this way, which reduces the amount of open-pit mining needed. Furthermore, fly ash and clinker from the power plant are utilized for road building and cement production. Such a setup reduced the ecologi-cal footprint of the industry (Gertler & Ehrenfeld, 1997). This symbiosis at Kalundborg was not created as a top-down initia-tive, but instead evolved gradually. But it is a good example of an industry structure that should be replicated more in Asia222s emerging economies. Industrial Symbiosis, Kalundborg, Denmark Power plant Kalundborg 251 Wikimedia Commons_Lci

122 Sustainable Urban Energy: A Sourcebook for AsiaKromer355z Town Hall administrative officials had previously turned a large pit into a dumpsite for household waste. The layers of deposited material reached up to 12 m. Total volume of de-posited waste amounted to 180,000 m3. The deposited subsoil consisted of clay, with substantial layers of eroded sandstone and sand-clay. As a consequence, the eco-system of a nearby pond was destroyed. Leachate from the deposit polluted the subsoil water and the deposit222s biogas escaped to the ambient environment. Utilization of biogas from household waste began in 1993. Through the initiative, the pond was cleaned and the eco-system balance restored. Biogas was tapped and re-vegetation of the entire area led to the creation of a green park. Also, this provided a cheap source of household heating energy. Since the beginning of the project, 337,177 m3 of biogas have been tapped and pumped from the deposit. The lesson learnt from this project is that there is potential to generate biogas from household waste when proper technology is employed (UN Habitat, 2008). Industry Based on Reuse and Recycling, Biogas from House-hold Waste, Czech Republic

123 Sustainable Urban Energy: A Sourcebook for Asia Water3.7In 2003 Vizianagaram Municipal Council introduced the concept of Watergy (Energy and Water efficiency). Water and energy audits of the municipal bulk water supply systems were coordinated and efficiency measures proposed and imple-mented. The program includes improvements in water sup-ply, sanitation, solid waste management and street lighting equipment emphasizing no/low cost energy savings measures. Advantage was taken of untapped energy and water efficiency opportunities in their water system. The city now saves more than 100 megawatt-hours of energy and USD 63,700 annually 227 slashing its energy costs by 18 per cent and eliminating 600 metric tonnes of carbon dioxide emissions. The measures have also reduced water waste through more effective supply and distribution. The energy cost savings free up money for other needed urban services. Water Utilities Save Money and Energy with Watergy Practices, Vizianagaram, India Water spire 251 Flickr_likeablerodent

124 Sustainable Urban Energy: A Sourcebook for AsiaWater for the city of Bangalore in India, has to be pumped from the river Cauvery 90 kilometres away and at 400 MSL i.e. 500 meters below the MSL of Bangalore. Huge expenditure is incurred on 50 MW of power required for pumping the water to the city. Additionally over 100 MW of power is required to pump the water from sumps to overhead tanks by households. In a year of average rainfall, a 100 square meter roof area would theoretically generate 97,000 litres of water of which about 77,600 litres could be harvested assuming 80 per cent capture efficiency (Vishwanath, April 2001). Rain water harvesting provides a good supplement to other wa- ter sources and utility systems, thus relieving pressure on other water sources. It also provides a water supply buffer for use in times of emergency or breakdown of the public water supply systems, particularly during natural disasters, and reduces storm drainage load and flooding in city streets (The Hindu, 2009). Rainwater harvesting has now been made mandatory in the Bangalore Water Supply and Sewerage (Amendment) Bill 2009. Owners of existing buildings who fail to install a rainwater har - vesting structure will be penalized. Mandatory Rain Water Harvest- ing, Bangalore, India

125 Sustainable Urban Energy: A Sourcebook for Asia Waste3.8Water heat recycling (also known as drain water heat recovery, grey water heat recovery, or sometimes shower water heat recovery) is the use of a heat exchanger to recover energy and reuse heat from drain water from various activities such as dishwashing, clothes washing and especially showers. The technology is used to reduce primary energy consumption for water heating. Standard units save up to 60 per cent of the heat energy that is otherwise lost down the drain when using the shower. The technology is fully recognized in Canada and the USA by LEED for homes and Energy Star for New Homes Canada. Typical retail price for a domestic drain water heat recovery unit ranges from around USD 400 to USD 1,000. For a regular household, water heating is usually the second high-est source of energy demand. The energy savings results in an average payback time for the initial investment of 222610 years according to Natural Resources Canada, Canadian Centre for Housing Technology and US DOE (Wikipedia: The Free Encyclo-paedia, 2010). Hot Water Heat Recycling Hot water heat recycling 251 www.silverhawk.co.th

126 Sustainable Urban Energy: A Sourcebook for AsiaThe Municipal Government of Tianjin, the fifth largest city in China, has implemented a project to recover landfill gas (LFG) for electricity generation. The project is located at the Shuang-kuo Landfill, one of five municipal waste landfills in Tianjin. The planned capacity of the project is 4.3 MW. The first generator of 1.03 MW started operation in May 2008, currently utilizing 500-600 cubic meters of landfill gas. The electricity produced is being sold to the North China Power Grid under a long-term contract. Through the project, the city was able to use waste to generate revenues and gain local environmental benefits. The project is managed by a specially created entity, the Tianjin Clean Energy and Environmental Engineering Co. Ltd. (TCEE). The initial investment was CNY 46.7 million (USD 6.9 million). Projected revenue from the sale of electricity over the project222s life is estimated at CNY 245.2 million (USD 36.2 million). The successful implementation of the project provides an excellent demonstration of the technology and the institutional mecha-nisms for LFG recovery and electricity generation, which can be applied in many other cities. Energy Recovery through Land034lls, Tianjin, China Solid Waste Management,Surabaya, Indonesia Solid waste management is a primary concern for many devel- oping countries. Surabaya, in Indonesia successfully reduced the amount of waste generated from 1,500 tonnes a day in 2005 to 1,300 tonnes in 2005 to 1,150 tonnes in 2008. To Methane recovery at landfill 251 Arcadis Source: http://www.esmap.org,

127 Sustainable Urban Energy: A Sourcebook for Asiaachieve this, an efficient solid waste management approach was first developed in one community, with an efficient com-posting method (a composting basket). A centre was set up that collected organic waste and households started dumping their waste here rather than on the streets and creeks. As a next step waste separation into organic and non-organic was promoted. Then, the project was scaled up, by adopting the same method in a larger number of communities. Leaders were trained to teach the residents how to produce compost from organic waste. The compost produced by households could be sold to supplement their income. Central Surabaya 251 City of Surabaya Source: IGES, 2009.

128 Sustainable Urban Energy: A Sourcebook for AsiaTo reduce the amount of garbage brought to the landfill or dumped into the river stream, Naga City developed the concept of establishing materials recovery centres in 1999. The city start - ed off with community-based and small-scale materials recov-ery facilities, which evolved into a city-wide materials recovery facility (MRF) launched in February 2004. The facility serves as a waste processing and recycling plant that converts biodegrad-able waste to organic fertilizer, which is sold at market prices. Non-biodegradables recovered by the facility are either sold or recycled. Around 85 per cent of household garbage is collected by the city222s garbage trucks and 15 per cent is disposed of by composting and or by burning. Recovering Waste Materials and Reducing Greenhouse Gas Emis-sions, Naga City, Philippines Recovering waste materials, Philippines 251 UN-Habitat/ Sebastian Lange Source: www.iclei.org

129 Sustainable Urban Energy: A Sourcebook for Asia Awareness Campaigns and Consumer Information3.9Delhi222s environmental department has been using school 223eco- clubs224 to shape students222 views. The clubs have broad aims, and engage students in a wide variety of projects, including planting trees, conserving water, creating nature trails and minimizing waste. They also provide a convenient way of spreading infor - mation and raising awareness on various issues. The clubs are given a framework to work with, along with a small subsidy, but it seems to be the enthusiasm of students and teachers that drives the idea. There are clubs in about 1,000 schools, many of which have teachers who are trained to teach others. Some schools also coordinate activities for up to 30 other schools. Students can engage in a vast range of activities, including air monitoring, water harvesting, recycling paper, awareness-raising campaigns, eco-tours, and even adventure sports. For a very small investment, Delhi has been able to harness interest in the environment in a way that encourages sustainability now and will shape attitudes of residents for years to come (Economist Intelligence Unit, year unknown). Eco-clubs: Educating Future Environmentalists, Delhi, India Eco-club 251 www.saintmarksschool.com

130 Sustainable Urban Energy: A Sourcebook for AsiaThe Asian Green City Index measures and rates the environ- mental performance of 22 Asian cities. They are capital cities as well as certain leading business centres selected for their size and importance. The cities were picked independently rather than relying on requests from city governments to be included. The index is intended to provide stakeholders with a unique tool to help Asian cities learn from each other and to better ad-dress the common environmental challenges they face. Awareness on Environmental PerformanceBenagaluru Hanoi Kolkata Manila Mumbai Bangkok Beijing Delhi Guangzhou Jakarta Kuala Lumpur Nanjing ShanghaiWuhan Hong KongOsaka Seoul Taipei Tokyo Yokohama Singapore Karachi Below Well Below Well Adapted from: Siemens AG, 2011

131 Sustainable Urban Energy: A Sourcebook for Asia Good Governance3 .10Selman Regency (district) in Yogyakarta has a total population of around 850,000. The district has adopted several measures which can be classified as best practice and considered for rep- lication elsewhere. These include a focus on the development of an education cluster, which has 35 universities, making the region the centre for education. It has also introduced perfor - mance based budgeting and asset management, valuation and appraisal. Transparency is achieved through publishing the an- nual accounts in the local newspaper. Municipal authorities are also coordinating with the neighbouring towns of Yogyakarta and Banjul for planning and solid waste management. The district has also developed and integrated Geographical Infor - mation System (GIS) for planning, monitoring and evaluation (Roberts, Good Practice Cases of Sustainable Urban Develop-ment in Selected Asian Countries, year unknown). Negombo in Sri Lanka, a city of less than 100,000 inhabitants, has developed a baseline study of its emissions. It offers guide-lines for measuring cities222 GHG and will help cities to better understand the sources of their emissions, and policy-makers to better target their strategies. This study shows that even small cities can produce useful and detailed emissions inventories based on this simplified reporting template. In addition, it raised the issue of how the Reporting Framework should reflect emis-sions related to air travel to and from an airport located outside of the urban boundary. Another aspect of the assessment in Negombo is the role of fisheries and agriculture in Greenhouse Gas emissions, given the relatively high number of people em-ployed in these two sectors. Again, where to draw the bound-aries of a city needs further exploration. UN Habitat has there-fore embarked to broaden the study to more comprehensively measure 223out-of-boundary224 GHG emissions in order to get a Urban Management, Selman District Indonesia Greenhouse Gas Emissions Moni-toring in Negombo, Sri Lanka

132 Sustainable Urban Energy: A Sourcebook for Asia National Urban Renewal Mission IndiaJawaharlal Nehru National Urban Renewal Mission is a mas- sive city modernization scheme launched by the Government of India under the Ministry of Urban Development. It envisages a total investment of over $20 billion over seven years. The scheme is meant to improve the quality of life and infrastruc-ture in cities and aims at creating 221economically productive, efficient, equitable and responsive cities222 through a strategy of upgrading the social and economic infrastructure in cities and provision of Basic Services to Urban Poor (BSUP). Key Initiatives include encouragement for states/cities: - To undertake fiscal, financial, and institutional changes re- quired for creating efficient and equitable urban centres - To make fuller use of energy and the initiative of the private sector in implementing its reform agenda. - To free land and housing markets from the constraints of age- old statutes, - To adjust infrastructure tariffs and prices to the cost of service provision in conjunction with local tax reform in order to meet the cost of joint services (Roberts, year unknown). sense of their importance (UN Habitat, UNEP, 2011). 251 www.panduphoto.wordpress.com

133Leading for Energy Sustainability227 Implementing Successful Policies223National Governments have their national (sustainability) policies, but after all it is the local governments who have to implement these policies.224 - Ban Ki-Moon, UN Secretary General, 2009National governments establish policies pertaining to environmental sustainability, and help in developing road maps for cities. There are investment and financing implications of sustainable resource planning for water, energy, planning for the basic urban services, and achieving the Millennium Development Goals (MDGs). National governments also set standards for water and air quality, CO2 emissions, the use of renewable energy sources, wastewater treatment, and solid waste man-agement (ADB, 2008). But translating the goals of these policies into action is often in the hands of local and city authorities. For a city to be sustainable, an integrated approach is needed, along with the necessary planning tools. Sustainable urban development calls for a high level of commitment from the local authorities, a transparent, participatory and inclusive urban management, along with capacity building and the appropriate financial tools (Figure 4.1). This chapter explores tools that can be used by local authorities for planning and implementation of policies, to lead their cities towards a more sustainable future. Local governments need to be empowered to follow a city-based approach in tack-ling these problems. Governance that puts sustainability on the top of its agenda will make a decisive difference and can make cities more competitive, efficient and attractive to outside investors (City Alliances, 2007). 04.

134Creating institutions that promote sustainable development, those that cooperate with all stakeholders and promote sustainable lifestyles among citizens is the foundation for a sustain-able energy future. Incentives (financial or social) are a powerful tool in the hands of urban policy makers. But these incentives need to be monitored and evaluated at regular intervals. Authorities can influence the use of renewable energy by their citizens, by local businesses and their own consumption by - Encouraging the use of 223green electricity224 for transport that is produced outside the city and imported - Investing in local renewable energy projects- Encouraging the uptake of 223small scale, building integrated, renewable energy systems224 such as solar heaters, ground source heat pumps, etc. - Encouraging the development of the renewable energy manufacturing industry. (IEA, 2009) Urban management - Actors - Government- Private sector- Community Capacity FinanceEconomic Social Sustainable Urban Adapted from: ADB, 2007

135 Sustainable Urban Energy: A Sourcebook for Asia 4.1223I walk to work every day, rather than take the presidential limousine. It222s better for the environ- ment and I can stop and chat to people on the way.224 - Mohamed Nasheed, President of the MaldivesVarious actors such as businesses, government agencies, local governments and NGOs use strategic planning as a tool. It has proven effective to tackle challenges of a diverse nature. The guidelines below are the outcome of the experience of the Unit-ed Nations Economic and Social Commission for Asia and the Pacific (UNESCAP 2011) and UN-Habitat in applying a strategic planning approach for challenging projects in diverse areas such as energy resource management, disaster risk management, lo-cal economic development and climate change. Each challenge or planning process is unique in terms of its scope, objectives, capacities, leadership and pace of growth. Any strategic plan-ning framework will have to respond to this uniqueness by providing flexible tools that can be applied by any city regardless of its size, level of development and nature of challenges faced. Strategic Planning Process of 1 2 3 4 5 6 7 8 9 10Get Started IdentifyStakeholders Analyse & Assess Establish a Vision Set Objectives Identify Actions & Strategies Select Actions Implement Actions Monitor & Evaluate Adjust &Modify Stage A Where are we now? Stage B Where do we want to go? Stage C How do we get there? Stage D Are we getting there? Adapted from: UN-Habitat and Ecoplan International, 2003When a city takes leadership in setting priorities and imple- menting solutions, two factors appear to be critical: its level of commitment and its capac- ity to act. (Worldbank, 2010)Strategic PlanningFigure 4.2 Long-Term Planning Framework

136 Sustainable Urban Energy: A Sourcebook for Asia Stage A Stage B Stage C Stage D Step 1 Get started Step 2 Identify stakeholders Step 3 Analyse and assess Step 4 Establish a vision Step 5 Set objectives Step 6 Identify actions and strategies Step 7 Select actions Step 8 Implement actions Step 9 Monitor and evaluate Step 10 Adjust and modify Table 4.1 Steps of a Long-Term Planning Framework Adapted from: UNESCAP, 2011STAGE A: Where are we now?1. Get Started It is crucial to first secure commitment from key actors such as the mayor, council members, department heads and senior planning officials. An executive committee that will oversee the planning process needs to be formed. For strategic planning to be effective it requires a champion. Experience reveals that the best results are achieved when this champion is the mayor. Other actors, however, can also act as champions and drive the process. To carry out the actual planning process a more techni-cal core planning team has to be created. 2. Identify Stakeholders Involving a wide range of parties in the planning and develop- ment of infrastructure can improve the quality of the plan-ning process and will receive support among all stakeholders. A participatory urban decision-making process begins with a stakeholder analysis and profiling to prepare and mobilise stakeholders, prioritises the issues and ensures local leaders get commitment and support from stakeholders. Smooth commu-nication between all the stakeholders has to be ensured. Ideally participation of stakeholders in a planning process happens at all stages. It is important that all stakeholders are engaged and Collaboration is also a new form of governance. By engag- ing stakeholders at all scales, the city creates a planning forum that is more appropri-ate to mixed economies in which private sector groups often control a majority of the infrastructure systems. (World Bank, 2010)

137 Sustainable Urban Energy: A Sourcebook for Asiathat various policy tools and instruments are considered. Creat- ing a matrix as illustrated in Table 4.2 can accomplish this. National Agencies State Agencies Regional Agencies Municipal Agencies NGOs Stake - holders & Planning Research & Demonstration & Leadership Education & Inspiration Legislation & Regulation Market Instru-mentsTable 4.2 Stakeholder Matrix Adapted from: World Bank, 20103. Analyze and Assess For any successful strategic planning an assessment of the cur - rent situation is a must. This includes creating a profile of the city including general data and economic, social, environmental and institutional aspects. Legal frameworks and drivers/barriers of eco-efficient infrastructure development should be identified. An eco-efficiency assessment of the city222s infrastructure needs to be conducted (see Annexe 1).STAGE B: Where do we want to go?4. Establish a Vision The vision is the starting point to set objectives and plan ac- tions. The vision should be inspiring and far-reaching. It can be a simple statement, a charter or even an artistic drawing (World Bank, 2010). If, for example, the scope has been defined as improving the energy efficiency in the electricity sector then the vision should focus on this sector only. It could simply state that the vision is to reduce energy demand by 50 per cent by a certain year. The vision statement can be elated with a set of stand-alone goals such as reducing transmission losses and distribution

138 Sustainable Urban Energy: A Sourcebook for Asialosses by 40 per cent; reduce energy demand from the house- hold sector by 60 per cent through energy efficient appliances; and reduce energy losses by the industrial sector by 40 per cent through the use of cogeneration or tri-generation technology. Though such goals describe long-term conditions, they provide a reference point for all planning process. It is important that these are formulated in a collaborative process that includes all stakeholders. Since the goals are long term, the process of building consensus around them tends to be a positive experi-ence, creating a common purpose among stakeholders and citizens (World Bank, 2010). This greatly improves the chances of success. The goals also need to reflect the local conditions and socio-cultural values of the region and the surroundings. Many a time, goals of the central government will overlap with the goals set by the local authorities. Such overlaps can be bet-ter addressed if policy makers at all levels collaborate with each other (IEA, 2009). Energy: Solar energy is becoming cheaper. Japanese solar electric roof tiles could make buildings in cities around the world largely self-sufficient. Another option is to simply use less power: electricity consumption could be cut by over 60% by adopting existing eco-friendly devices and practices. Stockholm, Stuttgart, and Helsinki generate some of their own electricity locally, with hot water as a by-product, by using combined town-center heat and power stations. Food: Cities could grow more of their food. Shanghai is almost self-sufficient in vegetables and grain. Urban vegetable growing on wasteland and rooftops is popular in New York and Berlin. Trees absorb carbon and sulfur emissions, filter dust, and cool the urban environment. One tree can transpire 380 litres of water a day. They give off oxygen and help reduce carbon monoxide and dioxide levels. Sewage: Traditionally, many towns and cities kept their farmlands productive by recycling human wastes. In Asia, using 223nightsoil224 to compost agricultural land helped ensure the ecological viability of cities. Human waste was collected by bucket and cart but now special vacuum trucks are used. Pipelines could transport urban sewage back to fertilize agricultural land and forests. Transport: Efficient public transport reduces pollution. Zero-emission vehicles using hydrogen fuel cells or solar power are in use. Cycling is the cleanest and most energy-efficient option. Keeping private cars out of city centres improves environments. Recycling: Cities with effective recycling schemes can recycle up to 75% of household waste. Today, some cities in Japan and the Netherlands recycle 50% of their paper, and 95% of Swedish cities recycle 80% of aluminum cans. In Cairo, over 500 small factories recycle plastics. New garbage management and recycling programmes create employment.Box 4.1 The Way Cities should be Source: Giradet, 1996 and Gilbert et all. 1996

139 Sustainable Urban Energy: A Sourcebook for Asia Setting clear objectives based on the vision statement will be the basis for defining actions and strategies for the implemen-tation phase. Objectives define priorities of infrastructure devel-opment; they will serve as a matrix for decisions about future projects. It is important that objectives are absolutely clear since this will allow to translate them into actions and to evaluate the outcome.STAGE C: How do we get there?6. Identify Actions and Strategies Once objectives are stated, a list of actions that will help achiev- ing the objectives can be compiled. The most promising actions in terms of eco-efficiency and feasibility will be chosen. Identify-ing eco-efficient actions allows highlighting those interventions that generate multiple benefits. A group of actions to achieve a specific objective will provide the project team with a planning strategy. 7. Select Actions Identify actions and strategies that best meet the identified ob- jectives and fit with current urban planning priorities and gaps. It is important to assess the consequences of each action and to consider how a given action will perform in your local context (integration with other projects, eco-efficiency, available capac-ity and resources, etc.). 8. Implement Actions In this phase ideas are translated into real actions. Often the efforts of planning and policy making do not get realized due to a lack of simple and clear mechanism as well as the presence of performance targets. A strong local political will, acceptance among the citizens and simple administrative systems and pro-cesses are crucial for this to be successful. Even if well-framed, sustainable development policies often do not get translated into successful implementations because of administrative hur - dles and complexities (e.g. red tapism for net metering, building permissions, too many government departments that need to A catalyst project is a key part of managing change. Catalyst projects should be projects that o033er substantial bene036ts to the most in032uential stakeholders and that may be completed relatively quickly at low risk to the city. (World Bank, 2010)

140 Sustainable Urban Energy: A Sourcebook for Asiaevaluate the same project, etc.). A lack of capacity building at the local level adds to the hurdles. Identifying potential hurdles by the core planning team will greatly help in the implementa-tion phase. To ensure that objectives are translated into action and implem- entation, it is important to ensure that the planning process can be mainstreamed into existing local planning practices and gov-ernment policies. By identifying the multiple benefits of the dif-ferent actions and strategies and by linking these to established plans, programmes and processes, a stronger business case can be built. This will greatly help in realizing planning objectives. It is advised to first start with pilot projects. These are projects that implement elements of the strategic plan on a smaller scale, be it at a district or at a neighbourhood level. This will help in promoting the acceptance among the population and will also serve as a test ground that provides a rich learning experience for later implementations. A successful pilot project will demonstrate the potential for wider implementation. It is important that all stakeholders are engaged and that various policy tools and instruments are considered. STAGE D: Are we getting there? Effective monitoring is central to any strategic planning. It is a vital management tool which enables authorities to keep track of progress and manage urban change (Cities Alliance, 2005). As this involves data collection, analysis and reporting it is a time consuming exercise, but it is a fundamental tool to measure progress. The indicators chosen for monitoring must directly relate to the vision and the objectives. For instance, if the objective is to reduce electricity consumption per capita by half by promoting smart appliances and awareness campaigns, then the indicator for measuring progress will be the per capita electricity consumption per year. It is important that the target is achievable, and includes a time element and that it is mea-surable (City Alliances, 2007). For examples of indicators, refer to Annexes 2 & 3. The information gained in the monitoring process is used for an evaluation which will determine if inter - ventions are meeting the objectives and if corrections need to be made.But for most questions of ecological sustainability, it is governance that matters 226 the creation of institutions that support understanding, coop- eration, and oversight. (Vattenfall, 2009)

141 Sustainable Urban Energy: A Sourcebook for AsiaBox 4.2 Eco-Budget as Monitoring Tool Key characteristics: ecoBUDGET (eB) is a management system, focusing on the management of natural resources and environmental quality by cities. Paralleling the financial budgeting system on a periodic (annual) basis, ecoBUDGET routinely integrates environmental target-setting, monitoring and reporting into municipal planning, decision making and management (ICLEI, 2004). Every year a budget for natural resources and environmental quality is developed and approved by the city council. Accounts (indicators) are established for each natural resource, and annual targets as spending limits are derived from mid-term goals. The budget uses physical units, not monetary terms. Budget preparation involves the assessment of the expected environmental impact of ongoing operations and special projects in order to forecast the envi- ronmental expenditure and considers mitigation strategies. The municipal council discusses the draft budget, accompanied by media reports and public discussion. During the budgetary year, all departments manage their environmental expenditure, that is, the use or pollution of natural resources, within the spending limits. After the budgetary year a balance sheet is prepared and performance reported to the council and public discussion. Source: City Alliances, 200710. Adjust and Modify Objectives and plans need to be reviewed and updated on a regular basis. This allows responding to the rapidly changing reality of Asia222s cities and to incorporate new information and knowledge related to people, environment and infrastructure needs. Time requirements of strategic planning: Determining the time requirement for each step of strategic planning is a big challenge. After having drawn the strategic plan, it is important to establish deadlines for completing each step. A sample is given in Annexe 4.

142 Sustainable Urban Energy: A Sourcebook for Asia 4.2223Integrated planning is seen as a holistic approach and process to carry out energy planning by integrating all the sectors in an economy and linking these plans to the three pillars of sustainable development i.e. economic, social and environmental.224 - Anare Matakiviti, Energy Adviser, SOPACPolicy interventions that aim at reducing carbon emissions and make cities environmentally sustainable will have to address town planning. In chapter 2 we have seen the impacts of urban sprawl development on infrastructure costs, traffic increase and land use. Integrated urban planning can significantly reduce carbon emissions and energy demand by the transport sector by promoting high-density development, implementing widespread public transport systems as well as non-motorized transport solutions. It will also address processes that reduce, reuse and recycle waste, and it will help create jobs, alternative freight transport solutions and financial mechanisms for sustainable infrastructure development (Table 4.3).Table 4.3 Process of Integrated Planning Approach, Example of Eco-City Dongtan, China Indices used in Dongtan Targets during Targets during - Air emissions (NOx, SOx, Particulates) - Water consumption - Energy consumption - Waste generation - Import/export - Land Use - Job Creation - Financial / economic vi- ability - Reduce predicted CO 2 emissions from freight and waste vehicles by 60 per cent. - Reduce predicted freight and waste collection vehicle numbers in Dong-tan by 50 per cent - Move 20 per cent of freight and waste using alternative means of transport - Maximum of 10 per cent to landfill - Reduce predicted CO 2 emissions from freight and waste vehicles by 60 per cent - Reduce predicted freight and waste collection vehicle numbers in Dongtan by 50 per cent - Move 20 per cent of construction material and waste using alternative means of transport - Reduce construction waste by 40 per cent through control of material to, and on the site Adapted from: ARUP, 2009There are various options available to authorities regarding policies and instruments that they can consider for sustainable development, as illustrated in Table 4.4.Integrated Planning

143 Sustainable Urban Energy: A Sourcebook for Asia Instrument type Options Tool examplesPolicy Instruments Process Instruments Planning Instruments Management Instruments Internet, electronic newsletters, outreach media EMAS, sustainable procurement, product life cycle analysis, eco- labelling City twinning projects will support climate-related initiatives in devel-oping cities Regulations, polluter pays principle Metaplan, task forces, round tables, expert panels, workshops, etc. Indicators, guidelines and docu- mentation from a range of and organisations (for example, UNEP222s GEO Cities, UN-Habitat222s Rapid Urban Sector Profiles [RUSPs] ecoBUDGET Air quality management Information: Written, Internet, face-to-face advice, information offices, training, research and develop- ment, awareness-raising campaigns, clearing house mechanisms Voluntary: Product labeling, branding, voluntary codes of practice or standards, externally accredited environmental management standards or voluntary agreementsEconomic: Emission charges & taxes, tax refund schemes, deposit & refund schemes, tradable permits, public spending subsidies, fines, legal liability for envi- ronmental damage, bonds Regulatory: Controls on emissions, activities, re- source use, toxic substance use through bans, permits, quotas and licensing, extended producer responsibility, mandatory environmental management standards, environmental audits, labeling or product standards, training and operator licensing -Visioning -Participation -Environmental profiles -SWOT analysis -Rapid Ecological Footprint Assessment-Monitoring systems and Indicators -Strategic Environmental Assessment -Environmental budgets and audits -Environmental quality management Adapted from: City Alliances, 2007

144 Sustainable Urban Energy: A Sourcebook for Asia 4.3Integrated Energy Planning [IEP] is 221222an area based decentralized energy plan to meet energy needs for the development ofalternate sources at the least cost to the economy and the environment222222 (NRDMS, 2009). It estimates 221222how much energy all the different consumers (e.g. industry and households) will need in the future to deliver certain services; and then identify a mix of appropriate sources and forms of energy to meet these energy service needs in the most efficient and socially beneficial manner222222(EL, 2009). Key requirements for integrated energy planning are inclusion of all energy service needs, and supply- as well as demand-side solutions, including energy savings and efficiency interven-tions. In describing possible future scenarios, in understanding the impact on the three drivers of sustainability, and in setting goals for the future, all costs and benefits 226 long term and short term 226 should be taken into consideration (EL, 2009). This also allows cities to compare the effectiveness of all energy alterna-tives on aspects of supply and demand, helping to account for their different financial viability, social acceptance and environ-mental characteristics. An Integrated Energy Planning process for the design of an Eco-City is elaborated in Figure 4.4. For the benefits of a demand-led approach refer to Annexe 5. IEP is a new concept in most developing countries and is slowly gaining acceptance. Often, utilities make least-cost plans, but these have been least-cost supply schedules rather than inte-grated supply and efficiency plans (D222Sa, 2004). Through the application of an IEP, better performance-based revenues can be generated. While each city/country has been using a slightly different IEP process, a broad indicative framework is given below:Good governance in the en- ergy sector requires transpar- ent, predictable and enforce- able political, social, economic rules. (UNESCAP, 2008)223Energy e035ciency and renewable energy can reduce our dependence on fossil fuels by 70% by 2040224 - 037e Ecofys Energy Scenario, December 2010Integrated Energy Planning

145 Sustainable Urban Energy: A Sourcebook for Asia Understanding current energy demand in the region is impor - tant before attempting to change it. For most cities, historical data is easy to obtain, and can be broken up by region and/or by sector. This can be made as detailed as possible (for instance demand by housing, or demand for refrigeration, washing, cooking, etc.). Daily and seasonal variations in demand can also be identified (International Energy Agency, 2009, p. 95). Using standard energy units, data on primary energy supply (like oil and coal), its transformation, transportation, distribution and end-user consumption (in all sectors and subsectors) is collected. Data on conditions required to use a service as well as on trends that led to the current situation, are also collected. These help in the analysis of demand drivers, price mechanisms and correla-tion of price versus demand. Step 2. Energy Forecasting and ScenariosVarious scenarios are created using available tools as mentioned in the previous section. These scenarios calculate cost and viabil-ity for various technological alternatives, which can be readily compared on the grounds of costs, environmental impact, and social acceptability. Based on these scenarios, and a suitable time horizon, demand for energy in the future is forecasted and various supply sources to meet this demand are also explored. Scenario planning is an integral part of Integrated Energy Plan- ning and can bring together various groups in order to reach a consensus on a vision for making the city sustainable. The celebrated success in sustainability at Freiburg in Germany was achieved through Scenario Planning and IEP. Some key tools that can be used are (ADB, 2008):- Area profiling using a SWOT analysis (strengths, weaknesses, opportunities, and threats) of the region - Sector-based productivity and forecasting at the city level or regional level using econometric models, usually developed at the national level and disaggregated spatially - Labour market analysis, including skills profiling and analysis of

146 Sustainable Urban Energy: A Sourcebook for Asiatravel to work patterns - Risk assessment analysis, including disaster preparedness. The best investment returns (in terms of cost per tonne of CO 2 avoided) should be identified, and considered alongside other environmental and social drivers such as reduced air pollution, employment opportunities, lifestyle, tourism, poverty, health and sustainable development (IEA, 2009). Identify Load forecast Existing resources Need for new resourcesEnvironmental & social factors Demand Supply T & D Rates Define suitable resource mixes Public feedback& approval Acquire resources Monitor UncertaintyanalysisFigure 4.3 Integrated Energy PlanningStep 3. Planning The strategy for a low carbon city begins with conceptualising an energy plan that has clearly spelt out energy goals, which could lead to writing of a local action plan and identifying tools and technologies to achieve those goals. Komor and Brazilian (2005) used these three steps for the renewable energy strategy for Ireland.In the end it will be human power 226 insight, innovation, entrepreneurship, and most of all leadership 226 that rises to meet these challenges. (Vattenfall, 2009)Adapted from: India Infrastructure Report, 2006

147 Sustainable Urban Energy: A Sourcebook for Asiaa) Setting the Energy Goals Securing the availability of energy and making it affordable, while making sure that producing it does not sizably increase carbon emissions, should be the goals for any energy planning. This can be achieved by marking goals under three focal areas: social, environmental and economic. These goals need to be quantified further through measures and targets for short-term and long-term. b) Setting up Local Action Plan þ A strategy to achieve the goals decided in Step (a) is now crafted. This would be the 223Local Action Plan224 that synthesizes all the goals, provides a schedule and outlines the policies and measures that could be used to achieve the target. Ideally this plan incorporates public awareness and education campaigns. c) Identifying Instruments and Technologies The Local Action Plan is now taken up for implementation and is supported by new and emerging technologies that were dis-cussed in the previous chapter (energy efficiency, renewable en-ergy systems and other areas). Broadly these would include CO2 reduction through demand-side management, CO2 reduction in energy production, and changes in urban structure. Annexe 6 lists the impact of some instruments against these two factors. In spite of the best efforts roadblocks are bound to occur but many of them are predictable. To remove these barriers certain instruments prove effective and these can be found in Annexe 7. It is clear therefore that local governments have a lot of poten- tial to address local-level energy issues which can have enduring impacts on society. They are not only better connected with people; they can also influence entrepreneurs to enable foster - ing of the most sustainable energy solutions. They need not turn to the central government all the time for support. This kind of bottom-up approach would go a long way in attracting atten-tion from the national government as well as foreign institutions by setting good examples of achievement through local efforts. One should recognize that local governments, working in collaboration with stake- holders, are now on the front line in dealing with some of the most pressing develop- ment challenges and that, most often, they hold the key to solutions. (World Bank, 2010)

148 Sustainable Urban Energy: A Sourcebook for Asia Step 1 Step 2 Step 3 Identifying Instruments Economic and Industrial - Energy price stability - Security of energy supply- Affordable and accessible energy for all - Overcoming intermittence - Demand Pull- Indirect price support- Technical standards/ certifications- Waste management- Information, education, and training - Improved planning process- Improved urban design through improved energy systems- Research, development, and demonstration- Capital support - Green building code Labelling- Knowledge - Awareness- Capacity building- Regulations - Sustainability- Greenhouse gas reduction- Reduced NOx, SOx - Local and regional eco- nomic development- Domestic employment and livelihood contrubute to poverty reductionFigure 4.4 Sustainable Urban Energy Goals, Plan and Instruments Adapted from: Komor and Bazilian, 2005Preference should be given to Integrated Energy Planning over new proposals for power production and purely supply-side solutions. Risks should be identified and strategies evolved to counteract them. Environmental, economic and social impacts of strategies should be fully integrated into the decision-making processes. With greater awareness, IEP is slowly being recognised as essen- tial for better results. For example, Tianjin (China) follows the IEP process. It is one of the four municipalities that have provin-cial level status in China. It is experiencing tremendous growth and plans to develop an extension of the city as an Eco-city. Theplanning process would be based on 26 key performance indicators dealing with environmental, social, economic and regional coordination issues. The project will promote the use of clean and renewable energy with an optimized energy structure to achieve a highly efficient energy supply. An integrated energy plan taking into account seasonal variation in resource availabili-

149 Sustainable Urban Energy: A Sourcebook for Asiaty and energy demand could help achieve a goal of 20 per cent waste heat recovery and renewable energy share in the whole energy consumption cycle (ES, 2009) (Table 4.5).- Haphazard land use and transport - Infrastructure frequently plays catch-up - Private vehicle-dominated cities - Poorly managed transport and traffic systems - Insufficient funding for public transport - Informal areas underserved by infrastructure - Inadequate wastewater disposal and treatment - Poor air quality - Inefficient solid, hazardous, and construction waste disposal - Energy inefficient and non people-friendly buildings - Sustainable policies and road maps relating to land use and transport - Managed movement: public transport and pedestrian focus - Improved management to make strategies happen - Raising appropriate amounts of long-term investment capital on the market - Basic infrastructure affordable to the poor- High water quality and treatment of waste water - Improved air quality and limits on greenhouse gases - Managed and recycled waste and industrial symbiosis - Sustainable buildings and neighbourhoods Sustainable urban form Unplanned urban form ...and fragmented approach Sustainable Table 4.5 Integrated Energy Plan Adapted from: ADB, 2008

150 Sustainable Urban Energy: A Sourcebook for Asia 4.4 223For every complex and di035cult problem, there is an answer that is simple, easy, and wrong.224 þ þ - H.L. M encken US -American journalist and essayist Policy instruments that help frame effective policies are crucial in sustainable development efforts. These depend on several parameters such as economic and environmental efficiency, stakeholder support and the ability to implement and enforce. It is important that the chosen tools balance the triple bottom line 226 the people, the planet and profit. These instruments can be economic, regulatory, educational, cooperation based and infor - mation based, as shown in Table 4.6 (GTZ, 2006). Also refer to Annexe 8 for policy directions and possible actions. Economic Regulatory Education & Research Cooperation Information - Environmental tax - Fees and user charge such as congestion charge - Subsidies - Environmental financing - Green Public pro- curement - Norms and Stan- dards - Environmental Liability - Environmental Control and En- forcement - Research and De- velopment - Training & Capacity Building - Encourage Sustain- able Leadership - Voluntary agree- ments - Facilitate Networks and Partnerships - Participatory - Planning - Eco labelling - Sustainable report- ing - Consumer advice centre - Information centre- Environmental qual- ity and monitoring Adapted from: GTZ, 2006 Economic Instruments Economic Instruments that stimulate sustainable development have proven to be one of the most successful tools in the hands of policy makers and urban authorities. They provide the financial incentives for enterprises and individuals to act in a more environment-friendly and energy-efficient manner. They can either aim at internalizing environmental costs by increas-ing prices and hence support goods and services that are more Policy Instruments

151 Sustainable Urban Energy: A Sourcebook for Asiasustainable, or they can employ subsidies and incentives in order to reduce the cost of sustainably produced goods and services. Economic instruments can be used for many sectors in the urban matrix, such as the waste, water, electricity and transport sectors. Public procurement, be it for green buildings, energy efficiency (smart appliances) or green shopping is also an effec-tive tool to stimulate sustainable development in urban areas. It will help stimulate the local green economy and sets a good example to the urban citizens and the commercial sector as well. Often, there is a dependence on the central government for providing the funding for developmental projects at the lo-cal level. However, in cases where local corruption exists, such funding may be hard to receive (IES, 2009). A common method employed by local governments is a property-rating scheme to provide local services (water, waste collection, street lighting, etc.). Box 4.3 Economic Instruments Source: ADB, 2006 There are some very innovative and enterprising methods of making revenues. Both Hong Kong222s and China222s rail systems227the Mass Transit (MTR) and Kowloon Canton Railways (KCR)227have used property to help finance capital investment costs. The Railway office buildings in Hong Kong and Kowloon houses ma- jor residential developments with 5,000 apartments, each built on podium structures over the rail depots, and other buildings along each line. The profits from the property portfolio have contributed about 15 per cent of the capital cost of their systems (USD 3.2 billion).One can explore taxation as a source of revenue. Higher taxa- tion for polluters not only results in reduced pollution, it is also an interesting way for local governments to generate revenue that can in turn be reinvested in sustainable development. For example, Singapore implemented a number of financial disin-centives like higher taxes and registration fees for motorized vehicles. This has not only resulted in a decrease in private ve-hicle ownership but also in substantial revenues for the city that could be reinvested into the public transport system. It must be noted that taxes make companies less competitive; hence providing subsidies for the adoption of sustainable ener - gy solutions could be more rewarding. An example for financial incentives or subsidies is the City of Ann Arbor (USA). The city has initiated a Municipal Energy Fund, a self-sustaining source of funds for investing in energy-efficient municipal projects, such as LED traffic lights, LED street lighting and solar energy systems. Through an initial allocation of USD 500,000 over five years, and by capturing 80 per cent of the resulting savings, the 037e institutional structures for managing the cities in the region are weak, even though the technologies are well known and abundant 036nance is available. 037e core capacities required for city management fall into three interdependent groups: planning and policy formulation, program and project formulation, and man- agement of service delivery. (ADB, 2008)

152 Sustainable Urban Energy: A Sourcebook for Asiacity has implemented energy efficiency projects in its buildings and throughout the city that pay back their investments in 3-5 years (A2G, 2009). Ann Arbor222s Energy Fund has demonstrated that energy efficiency can pay for itself in the long term. Raising energy prices to cost-covering levels is one of the least popular tools but can prove to be highly effective. Hungary spent only USD 522610 million a year till 1997 on energy efficien-cy improvements. But in January 1997 when energy prices were hiked to market-based levels, citizens started investing in energy efficiency up to USD 80 million a year in just 2 years222 time. Another successful programme is the BESCOM Efficient Light- ing Programme (ADB, 2006) in one of the Indian States. It gives consumers an opportunity to replace energy inefficient incandescent lamps with energy efficient CFLs in high us-age areas such as corridors, kitchens and porticos. BESCOM222s domestic consumers have two purchasing options - direct sales at discounted prices or under instalments (9 equal instalments recovered through BESCOM monthly bills). In both cases the consumers get a 12-month warranty backed up by BESCOM (TWAS, 2008). 1. User Charges 3. Product Charges 2. Emission ChargesNational and city governments should encourage the application of economic instruments to promote efficient use of resources. A number of economic instruments can be applied: They should be set so that utility resources like water and electricity are charged for at the full cost of usage, which includes the cost of providing supply, the cost imposed on the system by externalities caused by usage, and the opportunity cost of taking the resource from other potential users, including the ecosystem. These are charges for maintaining the environment itself and are in addition to user charges for the public service provided by government or industry. They can be based on the quality or quantity of waste, usually wastewater, processed to an agreed level. These charges on products that pollute the ground or surface water during or after con- sumption are best set at a level that reflects the actual value of external damages caused by their use. Procurement by governments and other institutional buyers can stimulate the di033usion of energy-e035cient products.(UNESCAP, 2008)

153 Sustainable Urban Energy: A Sourcebook for Asia 4. Tradable Rights 5. Marketable Permits 6. Deposit Refund SystemsNational government needs to set up the enabling environments before such instruments can be used. Two in particular227polluter pays and economic pricing of utilities227 can be prioritized. The establishment of markets for the rights to use a quantity of a resource227usually wa- ter227 helps achieve efficient allocation between users, but there needs to be strong gov- ernment, administrative, and legal structures to protect third-party and public interests. These are tradable rights applicable to pollution sources. For example, government can define a total level of pollution and sell or grant emission rights to all actors involved. Each actor is then entitled to treat its wastes and sell the permit, or not treat the wastes and purchase more permits. For commodities packaged in nonreturnable containers to ensure that they are returned for proper disposal or reuse. Adapted from: ABD, 2008 Regulatory Instruments Regulatory instruments also known as 221command and control instruments222 are legal instruments aimed at reaching desired energy targets. By regulation the behaviour of individuals or the commercial sector can be shaped towards more energy efficient and sustainable behaviour. The type of regulations passed by city and local governments will depend on the authority they are given by the national government. Sometimes difficult to implement, regulations can yield desired results if non-compli-ance is easily visible and consequences of non-compliance act as a deterrent. Experience has shown that regulatory instru-ments work best if they are supported by awareness campaigns and financial incentives. Having regulatory incentives in place is also a positive step that signals that energy and environmental concerns and procedures are being institutionalized. Regulatory instruments and standards include the following - Bans- Mandatory rulings- Minimum energy performance requirements- Integrated energy management and environmental pollution prevention and control

154 Sustainable Urban Energy: A Sourcebook for Asia- Product standards - Building codes An example of a regulatory intervention is the Vehicle Quota System (VQS) in Singapore, which allows the government to control the number of cars on the road. This is reviewed regu-larly and the quota gets changed every month, based on road conditions and the number of cars taken off the road in that month. Sector Regulation Transport Energy Industry Food - Mandatory rain water harvesting - Mandatory Green Building Codes - Ban on private vehicles in the city centre - Standards on emissions - Higher taxes for motorized vehicles- Standards on energy performance and/or emissions - Mandatory purchase of a certain percentage of renewable energy for the commercial sector - Mandatory instalment of solar water heaters for commercial and public buildings - Standards for production process, emissions and noise - Mandatory labelling of food miles Table 4.8 Selected Regulatory Instruments for Different Sectors Another useful categorization of policies is given by the Inter - national Energy Agency (2009). Policies are grouped as Targets (that signal the goals intended by the authorities), Carrots (policies that offer subsidies and incentives), Sticks (restrictions, bans, taxes and any other forms of disincentives), Guidance (education and awareness campaigns, etc.) and Voluntary ac- tions (cooperation and agreements between different stake-holders). Examples of such policy tools employed by a few cities are presented here for reference (Table 4.9).

155 Sustainable Urban Energy: A Sourcebook for Asia City or town Popula- tion Comments Policy Tokyo Capetown, South Africa Nagpur, IndiaAdelaide, Australia Merton, London, UK Freiburg, Germany Vaxjo, Sweden Palmerston North, NZ Masdar City, UAE El Hierro, Spain Samse, Denmark Gussing, Austria Greenburg, USA 12 400 000 3 400 000 2 100 000 1 160 000 200 000 200 000 78 000 75 000 40 000 10 000 4 400 3 800 1 600 Wealthy mega-city Poor mega-city Poor large cityWealthy large city Mega-city leading district Medium townSmall townSmall town Urban plann- ing from new One of Canary Islands Island for comparison Small comm- unity - rural Rebuilding after tornado Target Stick Carrot Guidance Voluntary municipal operation Volun-tary role modelOverall target Sector specific target Urban planning Building codes/ regulations Taxes Standards & mandates Capital grants & rebates Operating grants Investment Soft loans & guarantees Tax credits Tax reduction/exemptions Information/ promotion Training Procurement/ purchase Investment Utility Demonstration land use Voluntary agreements Adapted from: IEA, 2009

156 Sustainable Urban Energy: A Sourcebook for AsiaPolicies can also be detailed by sector. The transport sector alone has numerous policy options that can effectively combat the high usage of fossil fuels. These are listed in Table 4.10. For further information refer to Annexe 9. Transport Options to Reduce Parking and Land Use Management and Policy ReformsTable 4.10 Policy Options for the Transport Sector - Alternative Work Schedules - Bicycle Improvements - Bike/Transit Integration - Car sharing - Flexitime - Guaranteed Ride Home - Individual Actions for Ef- ficient Transport - Park & Ride - Pedestrian Improvements - Ridesharing - Shuttle Services - Small Wheeled Transport - Taxi Service Improvements - Telework - Traffic Calming- Transit Improvements - Universal Design - W alking and Cycling Encouragement - Commuter Financial Incentives - Congestion Pricing - Distance-Based Pricing - Fuel Taxes - HOV (High Occupant Vehicle) Priority - Parking Pricing- Pay-As-You-Drive - Vehicle Insurance - Road Pricing - Speed Reductions - Street Reclaiming - V ehicle Use Restrictions - Bicycle Parking - Car-Free Districts and Pedestrianized Streets - Clustered Land Use - Location Efficient Development - New Urbanism - Parking Management - Parking Solutions - Parking Evaluation - Shared Parking - Smart Growth - Smart Growth Planning and Policy Reforms - Transit Oriented Development (TOD) - Access Management - Car free Planning - Commute Trip Reduction Programmes - Market Reforms - Context Sensitive Design - Freight Transport Management - Institutional Reforms- Least Cost Planning Regulatory Reform - School Transport Management - Special Event Management - TDM Marketing - To urist Transport Management - Transport Management Associations Education and ResearchEducation and research is a crucial tool for moving towards a more sustainable future. Urban authorities can actively support setting up research and development centres that focus on sus-tainable development by providing required resources, including financial support and land. Environmental education can also be included in the national curriculum, and relevant subsidies can be provided to the schools that incorporate it. Education, training and capacity building and research will strengthen the Adapted from: Litman, 2003

157 Sustainable Urban Energy: A Sourcebook for Asiacollective environmental awareness of urban residents. Focus- ing on research and capacity building will also stimulate the employment market positively and can create green jobs. In order to cope with the rapid change in city planning and the demand for an integrated planning approach, extensive capac-ity building will be crucial for the successful implementation of sustainable urban development.Box 4.4 Voluntary Agreements Voluntary agreements aim to encourage single firms, groups of companies or industrial sectors to improve their resource efficiency and environmental conduct and performance beyond existing environmental legislation and regulations. Basically, voluntary agreements encompass two dimensions: 1) business and/or industry participate voluntarily, and 2) there is an interaction between public authorities and business/indus - try. Voluntary agreements range from initiatives where participating parties set their own targets and often conduct their own monitoring and reporting, to initiatives where a contract is made between a private party and a public body or stakeholder group, such as a local community and/or a non-governmental or environ- mental group. By publicly making such commitments, voluntary agreements are expected to 223stop a race to the bottom224 and to 223raise the bar224 towards continuous improvement in the environmental performance of the industry. Further, voluntary agreements facilitate the formulation of policies that address environmental aspects beyond the compliance of laws. They are an important instrument to stimulate the environmental dialogue aiming to achieve sustainable consumption and production.Source: GTZ, 2007 Cooperation InformationThe aim here is to reach a consensus on policy goals and design voluntary measures to reach these goals. Cooperation can be achieved at different levels for the implementation of stan-dards or energy conserving practices between city authorities and the private sector. This is particularly relevant when urban authorities do not have the mandate to pass legal regulations. It is important that the agreements are participatory in nature, allowing engagement of all stakeholders in a dialogue for achieving the targets. For example, an agreement for energy ef-ficient buildings may need the involvement of the private sector, architects, constructors and policy makers (GTZ, 2006). For any government to succeed in meeting sustainability goals, mobilisation and active participation of citizens is crucial. Aware - ness campaigns should be at the heart of new policy strategies and should not only aim at making people aware but also rather Policymaking and planning should be open and inclusive and should strive for a better balance between the econom- ic, social and environmental pillars of sustainable develop- ment. (UNESCAP, 2008)

158 Sustainable Urban Energy: A Sourcebook for Asiaaim at actual behavioural changes. This can be achieved by set- ting up specialized offices that provide the general public with information on resource and environmental issues. A special (energy and environmental) curriculum at schools can be an effective tool: it will not only educate and sensitize the future generations, but students will also bring their newly acquired knowledge back home and share it with parents. Special events such as car-free days or gardening workshops can be organized. The media can also be mobilized, with leaders and prominent persons being asked to actively promote energy and environ-mental issues. Awareness campaigns are most effective when coupled with other tools such as incentives for behavioural change, penalties and accessibility to alternatives.Box 4.5 Promoting Sustainable Lifestyles Car free day in New York 251 www.brooklynvegan.com Sustainable consumption or lifestyles are a key element for shaping a sustainable urban future. Promoting a more sustainable lifestyle needs active participation of business, policy makers and civil society. Sustainable consumption needs to be mainstreamed through all policy areas and linked with existing policy plans and strategies (CSCP 2010). To choose the most effective policy instruments in promoting sustainable consump- tion, an understanding of the needs of companies wanting to apply sustainable consumption business strategies is needed. A dialogue with those companies will provide insights into what is needed in order to create change. Green JobsFurther demographic growth in Asia will present challenges for the employment market. With the current demographic trends the working age population in Asia will grow by 300 million by 2025 (UN, 2009b). This trend will mostly happen in fast devel-

159 Sustainable Urban Energy: A Sourcebook for Asiaoping countries like India, Vietnam, Indonesia, Malaysia and the Philippines. The challenge for those labour-rich countries will be to develop industries geared to absorb these workers. Cities have a crucial role to play in the creation of green econo-mies that are pro-environment, pro-growth and pro-jobs. They can do this by investing in 221green222 infrastructure development such as public transport, sustainable urban agriculture, renew-able energy systems and technologies or thermal retrofitting of existing buildings. The green building sector and the renewable energy sector are especially promising for creating high skilled green jobs (Table 4.11).Table 4.11 Jobs from the Renewable Energy Sector Biofuels Wind power Solar hot water Solar PV Biomass power Hydropower Geothermal Solar thermal power Total > 1,500,000> 500,000 ~ 300,000 ~ 300,000 - - - ~ 2,000 > 3,000,000 Brazil 730,000 for sugar cane and ethanol productionGermany 100,000; United States; 85,000; Spain 42,000; Denmark 22,000; India 10,000 China 250,000 Germany 70,000; Spain 26,000; United States 7,000 Germany 110,000; United States 66,000; Spain 5,000 Europe 20,000; United States 8,000; Spain 7,000 Germany 9,000; United States 9,000 Spain 1,000; United States 1,000 Industry Estimated jobs world-wide Selected national estimates Adapted from: REN21, 2011a

160 Sustainable Urban Energy: A Sourcebook for Asia 4.5223When the best leader222s work is done, the people say: we did it ourselves!224 - Lao Tzu, Chinese Taoist philosopher Although local leaders are not involved in the framing of all policies, they can certainly play a vital role in influencing them, as they are the implementing authorities for these policies. They can also offer valuable feedback and recommendation for fu-ture policies at the state and national level. They are in a unique position to see what can be beneficial to the city as a whole. Leaders who take the lead in sustainable development are likely to encounter resistance from a number of people who doubt the benefits of the efforts. Strong leadership and determination will be required. Making unpopular decisions for the long-term benefit of a city requires courage. But it can be rewarding as well. Experiences in Seoul, Republic of Korea, or Curitiba, Brazil, demonstrate that in spite of initial resistance, sustainable de-velopment projects can be successful in terms of environmental outcomes and also in increasing the popularity of the leaders in pushing forward the agenda (UNESCAP, 2011). Leaders can lead in many ways. They can initiate change by placing sustainable development high on their priorities. They can help create a vision for the city around the principles of energy and environmental sustainability. They can set up partici-patory processes and align everyone involved towards the right objectives. They can help mobilize funds for the projects. They can also empower people to make a difference and allow them to act as catalysts. They can promote transparency and account-ability and can delegate responsibilities to partners to create a shared effort among political parties, government, the private sector and civil society (UNESCAP, 2011).Urban Authorities Leading the Way

161 Sustainable Urban Energy: A Sourcebook for Asia Outstanding Local LeadersCharismatic mayors and governors can be spotted around Asia and the globe. These are officials who go that extra mile to seek correct advice, get informed in energy-efficient practices, im-prove the quality of life for their constituencies and implement commendable projects in their cities. Many dynamic mayors and governors who choose to strengthen public transport facilities instead of building infrastructure for privately owned vehicles show the way forward and showcase what individual leadership can achieve. Fine examples of good leadership can be seen in cities like Curi- tiba (Brazil) and Rizhao (China). The Mayor of Rizhao (China)and his government adopted several measures and policies aimed at popularizing clean energy technology (ICLEI, 2009b) (NYT, 2007) (ITDP, 2009) (Torrie, 2002). Curitiba is an often named example of integrated city planning that the visionary Mayor Jaime Lerner executed (ICLEI, 2009b). It is best known for its impressive public transport system, the efficiency of which encourages people to leave their cars behind despite being the city with highest car ownership in Brazil. With the highest public ridership of any Brazilian city, it has the country222s lowest rate of ambient pollution (ICLEI, 2009b). Builders get tax breaks if their projects include green space. People living in shantytowns can exchange their garbage for bus tickets and food. This city that recycles 70 per cent of its garbage is an exemplar in showcasing to the world the enormous possibilities open to local leaders (ICLEI, 2009b). Curitiba public transport 251 www.treehugger.com Asian cities need better sys- tems to manage road tra035c, increase capacity of public transport systems to move people within and between cities, and promote sustainable and fuel-e035cient vehicles.(ABC, 2010)

162 Sustainable Urban Energy: A Sourcebook for AsiaThe Mayor of Bogota cancelled a massive ring road and used the money to build 300 km of bike lanes, a state-of-the-art bus rapid transit system, more libraries, playgrounds, and schools (NYT, 2007). The Mayor of Seoul (Republic of Korea), Lee Myung Bak also known as 223Mr Bulldozer224, built a bus rapid transit system, tore down an elevated highway in the city centre, restored waterways and pedestrian bridges, built more pedestrian zones and created extensive green spaces. As part of a traffic demand management policy, he introduced 223a leave your car once a week224 campaign, which encourages car own-ers to leave their cars at home and get tax breaks. His strategy called the 221push and pull strategy222 is based on the practical experience that congestion actually increases as you build more and more roads. The bus rapid transit system along with the ex-isting subway serves more than 4.5 million passengers everyday (ITDP, 2009). The Governor of Jakarta has already constructed three bus rapid transit lines (ITDP, 2009). Pedestrian zones are also springing up all over Chinese cities. Local leadership can certainly change the way a city runs or evolves. 037e Areas Where Leaders can In033uenceLocal governments can influence energy management through better planning and administration, the 223how-to224 of which are discussed in the subsequent sections. Interestingly many things are possible and can be in the purview of local governments without having to depend on any other agencies. Torrie (2002) delineates some of the areas, that local govern- ments influence directly: - Management of energy utilities - Use of fuels and electricity by administration- Planning, operation, and policy framing for urban planning- Enterprise and economic development- Investment management in the community- Environmental and public health and safety - Zoning and urban planning needs of individual projects- Regulation for built environment, including residential and commercial buildings, site layout - Water supply and sewage treatment management- Storm sewers and drainage managementWhen tax on petrol is in- creased, drivers may respond by reducing trips (or trip lengths), choosing more fuel- e035cient vehicles, or relocating their homes closer to work.(ADB, 2009)

163 Sustainable Urban Energy: A Sourcebook for Asia- Solid waste management, recycling and landfill facilities - Local roads, traffic management and parking- Transportation other than roads- Recreational, green space and cultural facilities- Policing, fire fighting and protection of people and property- Social welfare services Different departments sometimes look after all these areas and all decision-making takes place within them. This gives huge scope for policies that address only one issue, say, solid waste management to be counterproductive for other public infra-structure like local roads and traffic management. Authorities need to think of a city as a unit and look at all the issues as part of an integrated whole. City Mayors and Councillors are in a position to play that central role which brings about integrated solutions and makes sure none of these departments, while trying to address individual issues, is counter-productive to the efforts of others.

164 Sustainable Urban Energy: A Sourcebook for Asia 4.6223We know the problems.... and we know the solution; sustainable development. 037e issue is the political will.224 226Tony Blair, ex-Prime Minister of BritainLack of finances is a major hurdle for city authorities. Some have access to more funds than others, either through own revenues or from higher levels of government, the private sector, or even by borrowing. However, these are unlikely to be sufficient sources, and other alternatives need to be explored. The local government needs to decide on a financing framework that can assist with the sustainable development . Local and interna-tional capital markets and Special Purpose Vehicles (SPVs) can be set up for this purpose (ADB, 2008). SPVs define the relation - ships between the stakeholders of the project and ideally they should include the private sector in their activities (ADB, 2008). More details of SPVs are given in Box 4.6.Box 4.6 Special Purpose Vehicles 223Special purpose vehicles (SPVs) or entities are companies established for a specific activity with powers limited to those required to attain its purpose and a life span that ends when this has been achieved. When a government or a company227 commonly called the sponsor of the SPV227wants to achieve a particular pur - pose, it separates an asset, activity, or operation by forming an SPV. SPVs normally have three participants: (i) the transferor, originator, or sponsor that transfers the assets, liabilities, or rights that create the SPV; (ii) the transferee, which is the newly created SPV that receives the transferred assets, liabilities, or rights; and (iii) the investors that provide funding for the activities through loans to the SPV, often through the issuance of marketable securities. SPVs are relatively cheap to create and maintain while offering possible taxation, regulatory burden, and confidentiality benefits. SPVs are incorporated as companies whose articles of association limit business to the particular purpose, such as providing an infrastructure asset or service or the issue of securities. To maintain the integrity of the structure, the directors, officers, and the administra - tors of the SPV should be independent of the originator. The use of SPVs has spread to all sectors of the economy. In the public sector, the activities of SPVs are often undertaken through public226private partner - ships, build-own- operate-transfer (BOOT) schemes, and joint ventures to construct infrastructure, manage financial assets or liabilities, or deliver services on behalf of government.223Source: Dipplelsmana, 2004Financing the Sustainable Development

165 Sustainable Urban Energy: A Sourcebook for AsiaFinancing sustainable urban development projects generally requires a detailed financial structure that incorporates the local government and mobilizes the private sector fund for infra-structure development. But the range of financing sources has never been wider. Own-source revenue and funding options need to be maximized, and the local government must be given the mandate to do so. Since governments can normally bor - row at lower costs than the private sector, the real risks of the project are often not clear. When a government project has cost overruns, these are passed to the community through higher taxes. Hence, the lower borrowing rate provides no benefit to the community. Cost overruns are common in public projects undertaken in developing countries. But the private sector has an incentive to complete projects on time and under budget (ADB, 2008). Annexe 10 lists the impact of policies on sustain-ability and cost. Institutions and partnerships for urban develop-ment and initiatives from around the world are given in Annexes 11 & 12. Assets Maintenance ProjectsGovernment grants & loans - Annual budget- Public revenues- Domestic & foreign borrowing - Accounting reforms- Tax & revenue reforms- Operational efficiencies- Tariff enhancements - Leveraging resources- Accounting/revenues reform- Credit enhancement/ rating- Business plan - Project development- Process management- Project development funds Internal revenue generation Capital markets Public-private partnerships Accounting, tax & operational reforms; private sector management; project development & planning; tariff reforms; credit enhancement instruments & capital market managementAssets Sources of funds CapacityrequirementsFigure 4.5 Urban Infrastructure Financing Adapted from: ADB, 2008

166 Sustainable Urban Energy: A Sourcebook for Asia References 01. ADB (Asian Development Bank). (2006). Urbanization and Sustainability; Case Studies of Good Practices. Manila, Philippines 02. ADB (Asian Development Bank). (2007). Capacity Development Background Paper. Manag- ing Asian Cities Study. Manila, Philippines 03. ADB (Asian Development Bank). (2007). Climate Change; ADB Programs. Facilitating Inte- grated Solutions in Asia and the Pacific. Mandaluyong City, Philippines: Asian Development Bank 04. ADB (Asian Development Bank). (2008). Managing Asian Cities. Sustainable and inclusive urban solutions. Manila 05. ADB (Asian Development Bank). (2009). ADB Sustainable Development Working Paper Series. Rethinking Transport and Climate Change. . Manila, Philippines 06. ADB (Asian Development Bank). (2010). Clear Energy in Asia. Case Studies of ADB Invest- ments in Low-Carbon Growth. Manila, Philippines 07. ABC (Asia Business Council). (2010). Solutions for Asia222s Cities. 08. Altieri, M., N. Companioni, K. Canizares, C. Murphy, P. Rosset, M. Bourque, and C. Nicholls. (1999). The greening of the 223barrios224. Urban agriculture for food security in Cuba. Agricul- ture and Human Values 16:131-140. 09. APERC (Asian Pacific Energy Research Centre). (2010). Pathways to Energy Sustainability. Measuring APERC Progress in Promoting Economic Growth, Energy Security and Environ-mental Protection. Tokyo, Japan 10. Archdeacon, K. (2008). Ride the Wind. CTrain. Accessed September 2011 from: http://www. sustainablecitiesnet.com 11. ASE (Alliance to Save Energy). (unknown) Budget Benefits of Energy Efficiency in Water Utili- ties www.iwahq.org/contentsuite/.../WWW%20stockholm%2001.pdf 12. Australian Government, Department of the Environment and Heritage, Australian Green- house Office. (2006). AGO Factors and Methods Workbook

167 Sustainable Urban Energy: A Sourcebook for Asia 13. Bai, X. and H. Imura. (2000). A comparative study of urban environment in East Asia: Stage model of urban environmental evolution. International Review for Environmental Strategies, 1 (1), 135-158. 14. Binayak Das, E. S. (n.d.). (2010). Sharing the Reform Process, Learning from Phnom Penh Water Supply Authority. Mekong Region Water Dialogues Series Publication; No. 3. IUCN, Gland, Switzerland and Phnom Penh 15. Bloomberg News. (2010). Accessed August 2011: http://www.bloomberg.com/apps/ news?pid=newsarchive&sid=aE.x_r_l9NZE 16. Bourque, M. a. (2001). Agricultura Urbana en La Habana (Cuba). Revista Agricultura Ur - bana, 1, 27-29. 17. BP. (2011). Statistical Review of World Energy Consumption. London 18. Braungart M., McDonough W. and Bollinger A. (2006). Cradle-to-cradle design: creat- ing healthy emissions e a strategy for eco-effective product and system design. Journal of Cleaner Production. 15, 1337 - 1348 19. Chapman, R., Goldberg, E., Salmon, G. and Sinner, J., (2003). Sustainable Development and Infrastructure, Report for the Ministry of Economic Development, New Zealand. 20. City Alliances. (2007). Livable Cities. The Benefits of Environmental Urban Planning. Wash - ington, DC 21. Commission for Global Road Safety. (2006). Make Roads Safe: A New Priority for Sustain- able Development, London. 22. CSCP (Collaborating Centre on Sustainable Consumption and Production). (2010). What public policy framework is required to encourage sustainable consumption business strate- gies? Making the Business Case Towards Low Carbon and Resource Efficient Lifestyles. 23. Department for Transport. (January 2011). Creating Growth, Cutting Carbon. Making Sus- tainable Local Transport Happen. London. Source: http://www.official-documents.gov.uk/ 24. Dipplelsmana, R. (2004). Special Purpose Entities and Holding Companies. Washington, DC: International Monetary Fund. 25. Dodman D. (2009). Blaming Cities for Climate Change? An Analysis of Urban Greenhouse Gas Emissions Inventories. Environment and Urbanization 21(1): 185-201.

168 Sustainable Urban Energy: A Sourcebook for Asia 26. Doi N. and Asano A. (2011). Understanding the factors affecting the urban transport energy. in: Asian cities 226 pathways of urban transport indicators from 1995 to 2009 In Envi- ronmental Economics, Volume 2, Issue 2, 2011 27. EAUE. (2009). Freiburg, Sustainable District Model System, Vauburn. Accessed June 2009. http://www.eaue.de/winuwd/178.htm 28. EcoCity Builders. (2010). Retrieved August 2011, from www.ecocitybuilders.org 29. Economist Intelligence Unit (2011). Retrieved August 2011, from http://www.eiu.com/ 30. EL. (2009): Sustainable Energy Briefing4. Integrated Energy Planning. Accessed May 2009 http://www.earthlife.org.za/ wordpress/wp-content/uploads/2009/02/se-4-integrated-ener - gyplanning.Pdf 31. Energy Saving Trust. (2009). Quantifying the energy and carbon effects of water saving. Summary Report. London 32. EPA (US Environment Protection Agency). (2010). Accessed September 2011, from: http:// www.epa.gov 33. Esrey, S. A. (2001, March). Ecological Sanitation. Closing the Loop. UA-Magazine . 34. EWAG (Swiss Federal Institute of Aquatic Science and Technology. (2008). Global Waste Challenge. Situation in Developing Countries. 35. FAO (Food and Agriculture Organization of the United Nations). (2011). Global Food Losses and Food Waste. Extent, Causes and Prevention. Rome, Italy 36. Frieden, D. (2010). Energy Efficiency: How Everyone Can Generate Negawatts. Invensys Systems Inc. 37. Geography. (2009). Urban Heat Islands. Accessed September 2011, from: http://geography. about.com/ 38. GIZ (Deutsche Gesellschaft f þu374 r Internationale Zusammenarbeit). (2010). Guidelines for water loss reduction. A focus on pressure management. Eschborn, Germany 39. Girardet, Herbert. (1996). The Gaia Atlas of Cities. London: Gaia Books. 40. Gilbert, Richard, Don Stevenson, Herbert Girardet, and Richard Stren. (1996). Making Cities Work. London: Earthscan. 41. Goldman, R. (2000). Urban Agriculture: Back to the Future. GB-URP Connections, Spring

169 Sustainable Urban Energy: A Sourcebook for Asia 42. Gonz341lez Novo, M. C. (2000). Urban Agriculture in the City of Havana: A Popular Response to a Crisis. German Foundation for International Development, Food and Agriculture Devel - opment Center . 43. Greenpeace. (2007). Hiding Behind the Poor. A report by Greenpeace on Climate Injustice. Bangalore. Greenpeace India Society 44. Greenpeace. (2009). Energy Revolution. A Sustainable India Outlook. Amsterdam. Green- peace International 45. GTZ (Deutsche Gesellschaft f þu374 r Technische Zusammenarbeit). (2000). ECO-Industrial Parks. A Strategy towards Industrial Ecology in Developing and Newly Industrialised Countries. Eschborn, Germany 46. GTZ (Deutsche Gesellschaft f þu374 r Technische Zusammenarbeit). (2002). Policy Guidelines for Road Transport Pricing. A Practical Step-by-Step Approach. Eschborn, Germany 47. GTZ (Deutsche Gesellschaft f þu374 r Technische Zusammenarbeit). (2003). Mobility Manage - ment/ Sustainable Transport:A Sourcebook for Policy-makers in Developing Cities Module 2b. Eschborn, Germany 48. GTZ (Deutsche Gesellschaft f þu374 r Technische Zusammenarbeit). (2004). Land Use Planning and Urban Transport. Eschborn, Germany 49. GTZ (Deutsche Gesellschaft f þu374 r Technische Zusammenarbeit). (2007). Policy Instruments for Resource Efficiency. Berlin, Germany. 50. GTZ (Deutsche Gesellschaft f þu374 r Technische Zusammenarbeit). (2009). Adapting Urban Trans - port to Climate Change Module, 5f, Sustainable Transport: A Sourcebook for Policy-makers in Developing Cities. Eschborn, Germany 51. GWEC (Global Wind Energy Council). (2011). India Wind Energy Outlook. 52. Hinrichsen, D., Robey, B. and Upadhyay, U.D. (1997). Solutions for a Water- Short World. In Population Reports, series M, no. 14, December 1997. Johns Hopkins School of Public Health, Population Information Program, Baltimore 53. HPEC (The High Powered Expert Committee). (2011). Report on Indian Urban Infrastructure and Services. 54. IBNET. (2011). Accessed September 2011, from: IBNET: www.ib-net.org .

170 Sustainable Urban Energy: A Sourcebook for Asia 55. IGES (Institute for Global Environmental Strategies). (2009). Policy Brief. Reducing Waste through the Promotion of Composting and Active Involvement of Various Stakehold- ers: Replicating Surabaya222s Solid Waste Management Model. Policy Brief #9 December 2009. Kitakyushu, Japan 56. ICLEI (Local Governments for Sustainability). (2009a). International Workshop on Energy Efficiency & Renewable Energy Measures for Indian Local Governments. 20th January 2009, Thane 57. ICLEI (Local Governments for Sustainability). (2009b). Integrated planning the key to success in Curitiba. 222 Accessed June 2009 from: http://www.eaue.de/winuwd/178.htm 58. IEA (International Energy Agency). (2002). District Heating and Cooling.Optimization of Cool Thermal Storage and Distribution. Netherlands Agency for Energy and the Enviro-ment 59. IEA (International Energy Agency). (2006). World Energy Outlook. Paris: IEA Publications 60. IEA (International Energy Agency) (2007). Key World Energy Statistics. Paris: IEA Publi - cations 61. IEA (International Energy Agency). (2009). Transport Energy and CO2; Moving Towards Sustainability. Paris: IEA Publications 62. IEA (International Energy Agency). (2009). Cities, Towns & Renewable Energy. Yes In My Front Yard. Paris: IEA Publications 63. IEA (International Energy Agency). (2010). World Energy Outlook 2010. Paris: IEA Publi- cations 64. IEA (International Energy Agency) and OECD (Organization of the Petroleum Exporting Countries ). (2010). World Energy Outlook. Paris, France 65. IIED (International Institute for Environment and Development). (2009). Climate Change and the Urban Poor. Risk and Resilience in 15 of the World222s most vulnerable Cities. London 66. IIED (International Institute for Environment and Development). (2009). Assessing the Costs of Adaptation to Climate Change: A Review of the UNFCCC and Other Recent Estimates, International Institute for Environment and Development. London. 67. IPCC (Intergovernmental Panel on Climate Change). (2007). Climate Change 2007: Mitigation of Climate Change 2007. Contribution of Working Group 3 of the Fourth Assessment Report of the IPCC. New York: Cambridge University Press

171 Sustainable Urban Energy: A Sourcebook for Asia 68. ITDP (Institute of Transport and Development Policy). (2009). Promoting Sustainable and Eq- uitable Transportation Worldwide. Accessed June 2009 from: http://www.itdp-indonesia.org 69. IUSES (Intelligent Use of Energy at School). (2010). Building Energy Efficiency. Student Handbook. Retrived August 2011 from: www.iuses.eu/.../STUDENTS_HANDBOOKS/Build- ing_handbook.pd... 70. Jia, L. (2009). Spatial Planning in Shenzhen to Built a Low Carbon City. The 45th ISOCARP Congress. 71. Katz, S. (2006). The Revolution Will not be Microwaved: Inside America222s Underground Food Movements. Chelsea Green Publishing. 72. Kolamala, S. (unknown). Co-generation. Combined Heat and Power (CHP). Retrived Sep- tember 2011, from: www.energymanagertraining.com/.../11_SureshKolamala.pdf 73. Komor, P. and Bazilian, R. (2005). Renewable energy policy goals, programs and technolo- gies. Energy Policy, Sept. 2005, Vol 33, issue 14, p. 1873-1881 74. Kwang, S. H. (2011). Sow and Reap . Retrived August 2011, from: www.businesstimes.com. sg/mnt/media/image/.../wealth_pg24.pdf 75. Litman, T. (2003). Sustainable transportation indicators. Victoria Transport Policy Institute Victoria, Canada 76. Lowe, E. A. (1998). Eco-Industrial Parks - a handbook for local development teams, Draft. CA: RPPInternational. 77. Matakiviti, A. (2003). Integrated Energy Planning 226 A Tool for Sustainable Development. A Case Study. SOPAC. 78. McKinsey Global Institute. (2011). Urban World: Mapping the economic power of cities. 79. Michael Ableman, F. H. (2000). Urban Agriculture: A Revolutionary Model for Economic Development. New Village: Building Sustainable Cultures (2). 80. Mohanty, B. & Aung Naing Ou (1997). Fundamentals of Cogeneration, AIT Publication 81. Mohanty, B. (2011). Development of cogeneration and district energy (CDE) networks in South-east Asia, Proceedings of the 2nd Europeen Conferend on Polygeneration, Tarra- gona, Spain, 30th March - 1st April 2011

172 Sustainable Urban Energy: A Sourcebook for Asia 82. Mougeot, L. J. (2005). Agropolis.The Social, Political and Environmental Dimensions of Urban Agriculture. Ottawa, Canada : International Development Research Centre, London Sterling, VA : Earthscan, 83. Natural Resources Canada. Industrial Water Consumption. (2004). Accessed September 2011 from: http://atlas.nrcan.gc.ca/site/english/maps/freshwater/consumption/industrial/1. 84. Nordic Folkecenter for Renewable Energy. (2011). Accessed September 2011 from: http:// www.folkecenter.net/gb/tour/plusenergy/ 85. NRDMS (Natural Resource Data Management System). (2009). Integrated Regional Energy Planning. Concept & Approach. Accessed September 2011 from: http://nrdms.gov.in/ energy_planning.asp 86. NYT (New York Times). (2007) Buses May Aid Climate Battle in Poor Cities. Accessed June 2009 from: http://www.nytimes.com/2009/07/10/world/americas/10degrees.html 87. OECD and FAO. (2010). Agricultrual Outlook 2010-2019 . OECD-FAO. Retrived Au- gust 2011, from: Agricultural Outlook 2010-2019: http://www.agrioutlook.org/datao-ecd/13/13/45438527.pdf 88. OPEC (Organization of the Petroleum Exporting Countries). (2010). World Oil Outlook 2010. OPEC Secretariat, Vienna, Austria 89. Rees, W. E. (2010). Toward Sustainable Cities. Global Footprint Forum. Colle di Val d222Elsa. Italy. Accessed September 2011, from: www.footprintnetwork.org/.../Cities%20of%20 the%20Future%20Ree. 90. Rediff. Com. 2007. How much food does India waste. Accessed September 2011 from: http:// http://www.rediff.com/money/2007/mar/16food.htm 91. REN21 (Renewable Energy Policy Network for the 21st Century). (2011a). Renewables 2011, Global Status Report. Paris: REN21 Secretariat 92. REN21 (Renewable Energy Policy Network for the 21st Century). (2011b). Global Status Report on Local Renewable Energy Policies. Paris: REN21 Secretariat 93. Responsible Research. (2011). Waste in Asia. Issue for responsible Investors. Singapore þ 94. Rocky Mountain Institute. (2008). Smart Garage Charrette Report. Retrieved September 2011, from: move.rmi.org/files/smartgarage/SmartGarageCharretteReport_2.10.pdf

173 Sustainable Urban Energy: A Sourcebook for Asia 95. Roth, M. (2002). 221Effects of cities on local climates222 IGES, Proceedings of Workshop of IGES/ APN Mega-City Project, and Kitakyushu Japan. Retrieved August 2011, from http://eetd.lbl. gov/HeatIsland/HighTemps/ 96. Saikku, L. (2006). Eco-Industrial Parks. A background report for the eco-industrial project at Rantasalmi. Publications of Regional Council of ETEL304-SAVO . 97. Salle, J. M. (2004). Growing Cites: Cuba222s Experiment With Urban Agriculture During the 223Special Period224 . Dalhousie University. Halifax 98. Sanjeev, S. S. (2009). The Alternative Urban Futures Report. Urbanization and Sustainability in India: An interdependent Agenda. WWF for a living planet, India. Mirbilis Advisory. 99. Siemens AG. (2011). Asian Green City Index. Assessing the environmental performance of Asia222s major cities. Munich, Germany 100. Singh, Pradeep. (2007). Financing Urban Development, Infrastructure and Private Sector Involvement. Conference on Investing in Asia222s Urban Future. Manila. 101. Stern, N. (2006). Stern Review on The Economics of Climate Change (pre-publication edi- tion). Executive Summary. HM Treasury, London. Retrieved September 2011 102. Stulz, R., & L374tolf, T. (2006). What would be the realities of implementing the 2,000 Watt society in our communities? IMAGINE Seminar (p. 6). Novatlantis 103. Torrie, R. D. (2002).Policy Integration for Energy Related Issues in Asian Mega-Cities in Thinking Globally, Counting Locally, Quantification in Local Government Emissions Strate - gies, Workshop of IGES/APN Mega-City Project. Kitakyushu, Japan 104. TSG. (n.d.). Ten Shades of Green Embodied Energy. Retrieved August 2011 from http:// www.tenshadesofgreen.org/ shade4.htm. 105. UITP (International Association of Public Transport). (unknown). Public transport: the smart green solution! Doubling market share worldwide by 2025. Retrived September 2011, from: www.ptx2uitp.org/sites/.../UITP-PTstrategy_fullbrochure-EN.pdf 106. UN (United Nations). (2007). Sustainable Infrastructure in Asia. Overview and proceedings United Nations publication 107. UN (United Nations). (2009a). Water in a Changing World. The United Nations World Water Development Report 3: Paris: UNESCO, and London: Earthscan. 108. UN (United Nations) (2009b). World Population Prospects. Retrieved August 2011 from: United Nations Population Division: http://esa.un.org/unpp/index.asp

174 Sustainable Urban Energy: A Sourcebook for Asia109. UN (United Nations). (2010). Water for People Water for Life. The United Nations World Water Development Report. 110. UN (United Nations) Department of Economic and Social Affairs Database. Retrieved July 2011 from: http://esa.un.org/unpd/wpp/unpp/panel_population.htm. 111. UNESCAP (United Nations Economic and Social Commission for Asia and the Pacific) (2008). Energy and sustainable development. United Nations publications. Bangkok 112. UNESCAP (United Nations Economic and Social Commission for Asia and the Pacific) (2011). Are we building competitive and liveable cities? United Nations publications. Bangkok 113. UNEP (United Nations Environment Programme). (2004). The Use of Economic Instruments in Enviriomental Policy: Opportunities and Challenges. Nairobi. United Nations Publication. 114. UNEP (United Nations Environment Programme) (2008a). Kick the Habit: A UN Guide to Climate Neutrality. Nairobi. United Nations Publication. 115. UNEP (United Nations Environment Programme) (2008b). Green Jobs. Towards decent work in a sustainable, low-carbon world. Nairobi. United Nations Publication. 116. UNEP (United Nations Environment Programme). (2009). The Environmental Food Crisis . The Environment222s Role in Averting Future Food Crisises. A UNEP Rapid Response Assess- ment. Nairobi 117. UNEP (United Nations Environment Programme). (2010). Share the Road: Investment in Walking and Cycling Road Infrastructure. Nairobi. 118. UN-Habitat and Ecoplan International. (2003). Being Strategic about Local Economic Devel- opment. Volume 1: Concepts and Process. 119. UN-Habitat (United Nations Human Settlements Programme). (2008). State of the World222s Cities 2010/2011. Bridging The Urban Divide. London: Sterling, VA. 120. UN-Habitat (United Nations Human Settlements Program) (2009). Sustainable Urban Energy Planning. A handbook for cities and towns in developing countries. 121. UN-Habitat (United Nations Human Settlements Programme). (2011a). Global Report on Hu- man Settlement 2011; Cities and Climate Changes; Policies Directions . Nairobi: UN-Habitat, and London: Earthscan. 122. UN-Habitat (United Nations Human Settlements Programme). (2011b). Urban Patterns for Sustainable Development: Towards a Green Economy. Nairobi: UN-Habitat, and London: Earthscan.

175 Sustainable Urban Energy: A Sourcebook for Asia123. University of Rochester. (unknown). Retrieved September 2011 ,from http://www.energy. rochester.edu/uk/chpa/commheat/eursuccess.htm 124. Vatenfall (2009). A One Tonne Future. A Guide to the low carbon future. 125. Veolia. (2009). From Waste to Resource - An Abstract of World Waste Survey 2009. Paris. Cyclope & Veolia Environmental Services. 126. Viljoen, K. B. (2002). Cuba: Laboratory for urbanagriculture. In: One Planet Agriculture 60th anniversary publication by the Soil Association. 127. Viljoen, K. B. (2011). The Edible City: Envisioning the Continuous Productive Urban Land- scape (CPUL). Field. A free journal for architecture ,vol. 4 (1). 128. WBCSD (World Business Council for Sustainable Development). (2010). Energy Efficiency in Buildings. Business Realities and Opportunities. Summary Report. Conches-Geneva 129. World Economic Forum. (2009). Supply Chain Decarbonization; The Role of Logisitc and Transportation in Reducing Supply Chain Decarbonization. Logistics and Transport Partner - ship Programme. Geneva: World Economic Forum. 130. World Energy Council. (2010). Water for Energy. London.131. WHO (World Health Organization) and UNICEF (United Nations Children222s Fund ) (2006). Joint Monitoring Programme (JMP) for Water Supply and Sanitation 2006 data. NRW esti- mates: Roland Liemberger. Accessed September 2011, from: http://www.wssinfo.org 132. WHO (World Health Orgnization). (2008). World Health Statistics, Accessed August 2011, from: www.who.int/whosis/whostat/2008/en/index.html. 133. WHO (World Health Orgnization). (2009). Global Status Report on Road Safety: Time for Action. Geneva: WHO Press. 134. Woods Bagot. (2008). Sustainable Cities for our Future. Issue 0815 135. World Bank. (1992.). World Development Report 1992: Development and Environment. New York. Oxford University Press 136. World Bank. (1997). World Development Report 1997. The State in a Changing World. New York. Oxford University Press 137. World Bank. (2006). Pakistan: Electricity Distribution and Transmission Improvement Project. Project Information Document. Washington. DC

176 Sustainable Urban Energy: A Sourcebook for Asia138. World Bank. (2009). Scaling Up Carbon Finance in India. Background Paper. India: Strategies for Low Carbon Growth. Washington, DC 139. World Bank. (2010). Eco2 Cities. Ecological Cities as Economic Cities. Washington, DC 140. World Future Council. (2010). Regenerative Cities. Hamburg.141. WRAP (Waste & Resources Action Programme). (2010). The Truth about Recycling; Original Study by Waste & Resources Action Programme. The Economist. Accessed August 2011, from: http://www.economist.com/node/9249262 142. WWF (World Wildlife Fund For Nature). (2010). The Alternative Urban Future Report. Urban-

177 Sustainable Urban Energy: A Sourcebook for Asia Annexes Eco- Eco- intensity (Value unit/burden unit) (Burden unit/value unit) The following ratio is used as a general equation to measure eco-efficiency Often the reverse ratio is used, as a measure of the pollution or resource intensity of the service or product provided Adapted from: UNESCAP, 2011 Adapted from: Chapman and others, 2007 01. How to Measure Eco-e036ciency 02. Example of Sustainability Indicators in Urban Water Supply Infrastructure policy issue Suggested indicatorsWhat is the trend in asset condition, and what is the capacity to meet future needs? How reliable is the water supply utility?What is the economic performance of the water supply?How efficient (including eco-efficient) is the utility?Does the utility address both supply and demand issues?Does the tariff structure encourage cost-effective water conservation?What are the needs and scope for pro- moting water demand management? - Delivery capacity - Marginal cost of expanding capacity- Adequate signalling to community of any plans for expanding capacity - Record of service disruptions- Reserve capacity of existing infrastructure - Rate of return on water supply utility assets - Production cost (including labour) per cubic meter of water produced- Unaccounted-for (non-revenue) water (distribution losses, back-flushing) - Energy use for pumping and treatment per unit of supply- Water use trends by sector (including per capita residential use)- Price structure: volumetric rates, increasing block tariffs, seasonal charges - Ratio fixed/volumetric charges - Share of total cost covered by water bills, amount of cross- subsidization from general rates

178 Sustainable Urban Energy: A Sourcebook for Asia 03. Urban Energy Sustainability Indicators Type of Indicator Energy Indicator Components ThemeAccessibility Affordability Disparity Overall use Supply efficiency End use Share of households (or population) without electricity or commercial energy or heavily dependent on non-commercial energy Share of household income spent on fuel and electricity Household energy use for each income group and correspond- ing fuel mix Energy use per capita Efficiency of energy conversion and distribution Commercial energy intensityIndustrial energy intensity Household energy intensity - Household ( or population without electricity or commercial energy, or heavily dependent on non-commercial energy - Total number of households or popula- tion - Household income spent on fuel and electricity - Household income (total and poorest 20% of the population) - Energy use per household for each income group (quintiles) - Household income for each income group (quintiles) - Corresponding fuel mix for each income group - Energy use (total primary energy supply, total final consumption and electricity) - Losses in transformation systems in- cluding losses in electricity generation, transmission and distribution - Energy use in commercial sector- Corresponding value added - Energy use in industrial sector and by manufacturing branch - Corresponding value added - Energy use in households and by key end use - Number of households, floor area, persons per household, appliance ownership Social- Equity Economic

179 Sustainable Urban Energy: A Sourcebook for Asia- tal Others Educational Transport energy intensity GHG emissions from energy pro- duction (for the city) and the per capita energy use Ambient concentration of air pol- lutants in city Energy used for bringing water to the city and pumping (including pumping at end use level) Energy used for taking out waste water from the city and treating it Transport energy spent on taking out waste from the city to land- fills/ incinerators/recycling Installed capacity Lighting intensityEnergy consumed Timings of automatic switch on and off Awareness of energy related problems - Number of four wheelers per 1000 population - Number of two wheelers per 1000 population - Number of public transport vehicles (buses) per 1000 population - GHG emissions from energy production and use - Population - Concentration of pollutants in air - Energy bills at Water Utility for water services - End use energy for pumping water per capita or population - Energy supplied to waste water utility - population - Fuel spent on trucks/lorries for popula- tion - Energy spent on creating and managing landfills and incinerators - kW/km of road - Lux/Watt- kW/km per month - Surveys to check on energy awareness levels of people of different age groups, sectors, income-levels and class Climate Change Air QualityWater Waste Water Solid Waste Street Lighting Energy Awareness Adapted from: IAEA, 2005

180 Sustainable Urban Energy: A Sourcebook for Asia 04. Strategic Planning Process Step Stage Potential time requiredTypically, 1 to 6 months. If strategic planning is new, this step could take months Could take a half-day session or up to several months, ongoing over the course of the project A half-day kick-off workshop followed by 3 months to a year of study. External technical support may be required Could take a half-day workshop with stakeholders or up to a month or more Initial objectives can be formulated in a one-day workshop. Often, how- ever, this takes several meetings Initial identification of options can be done in a one to two-day work- shop. Study and evaluation, depending on detail can take 1 day to several months Depending on the extent of the evaluation from a half day workshop with stakeholders to a 1 month or more for impact assessments The development of an action plan can be straightforward, but the time for actual execution depends on the project specifications Initial framework could be developed in a one-day workshop to deter - mine the 223who, what, when224 of monitoring and evaluation. A date for a full evaluation should also be set As plans and impacts evolve and change over time, adjustments in plans may be required Get started Identity stakeholders Analyse & assess Establish a Set Identify actions & stragegies Select actions Implement actions Monitor & Adjust & modify A B C D 1 23456 7 89 10 Adapted from: UN-Habitat and EPT, 2005

181 Sustainable Urban Energy: A Sourcebook for Asia 05. Bene034ts of Demand-led Approach of a supply- led approach demand-led approachA disproportionate focus on the needs of the supply industry leading to inadequate consideration of the needs of the consumers A focus on income from the sale of energy sources and so a resistance to energy efficiency or fuelswitch- ing measures. Potential for misjudging the future demand on energy supply. A poor understanding of suppressed demand 226 for example households may be able to afford solar water heaters if proper financing were available: a supply side focus would miss such opportunities. Little attention given to the management of demand (including behaviour change). The majority of users have no voice in the system.The emphasis on supply makes the system vulnerable to energy scarcity and to escalating energy costs. In addition, users have little control over their energy expenditure. Consumer needs lead the way so supply is planned to fit needs. Energy efficiency and appropriate means to meet- ing energy service needs (cooking, warm house etc.) become all important. Energy demand changes are tracked and can be anticipated timeously. As the focus is on a range of ways of meeting energy service needs, a wider range of users can satisfy their energy service needs Attention is focused on managing demand and demand-side management is considered prior to supply side solutions. There is constant interaction with users and users are empowered to make energy decisions and choices The emphasis on diversity of means of meeting energy service needs and on efficiency means that the system is more flexible and robust. Energy users have much greater control over their energy expenditure. Adapted from: UN-Habitat, 2009

182 Sustainable Urban Energy: A Sourcebook for Asia 06. Barriers to E035ectiveness of Policies Barrier category Instrument category recommended Recommended policy instruments as remedies - Regulatory- normative/ regulatory-informative - Economic instruments - Fiscal instruments - Regulatory-normative - Economic instruments - Support action - Regulatory-normative/ regula- tory/informative - Economic instruments - Fiscal instruments - Support, information, volun- tary action - Support, information, volun- tary action - Support, information, volun- tary action - Regulatory/informative - Building codes, energy efficiency obligations, green procurement, DSM programmes, ESCOs, cooperative procurement, energy efficiency certificates - Taxation, public benefit charges, tax exemptions, incen- tives/rebates/grants - Building codes, ESCOs - Public leadership programmes - Building codes, energy efficiency obligations, green pro- curement, DSM programmes, ESCOs, energy efficiency certificates, - Taxation, public benefit charges, tax exemptions, incen- tives/rebates/grants, voluntary agreement, public leader - ship programmes, awareness raising, detailed billing - Voluntary labelling, voluntary agreement, public leader - ship programmes, awareness raising, detailed billing - Voluntary agreement, public leadership , awareness raising, detailed billing - Green procurement, DSM programmes, mandatory audits Economic barriers Hidden costs/ Market failures Cultural/ barriers Information barriers Structural/ political

183 Sustainable Urban Energy: A Sourcebook for Asia 07. Computer Models that Help with Energy Planning Model Name Type of Model Other Information OriginIAEA, US-DOE1IIASA2IAEA3EU4W orld Bank, GTZ5UNDTCD6IAEA, US-DOE EPRI7EU OECD8PROFU9SEI- Boston10IKE11ITSAP12, IEA BNL13PROFU IEJE14IER15Energy Supply & Energy Sys- tem Model Energy Information System Energy Information System Energy Supply & Energy Sys- tem Model Model of Life Cycle Assess- ment of Power Systems Modular Planning Instrument Modular Planning Instrument Energy- Economic Model Energy- Economic Model Energy- Economic Model Model for the Analysis of En- ergy Conservations Potential Modular Planning Instrument Model for the Analysis of Energy Demand Energy Supply & Energy Sys- tem Model Energy- Economic Model District Heating ModelModel for the Analysis of Energy Demand Modular Planning Instrument A model for simulation of energy supply, belongs to ENPEP family CO2 database Database and Technology Chain Analysis Energy Flow Optimization Model Environmental model, a Simulation modelIt couples a macro economic model with a simulation model of energy sectors. Energy and Power Evaluation Programme Energy technology Assessment- A dynamic model which couples the macroeconomic MACRO with the aggregated energy system model ETA Computable General Equilibrium model for studying economic energy environment interactions. Dynamic model based on energy technology assessment with 5 world regions An EXCEL based database model Long Range Energy Alternative Planning- a simulation model with environmental data- base Model for Analysis of energy demand, a module of the ENPEP planning tool Market Allocation model with a user support system Linked models for Energy Economy Analysis A Simulation model for District Heating System Model for evaluating the energy demand, a bottom up model Modular Energy System Analysis and Planning BALANCE CO2DB DECPAC/ DECADES EFOM-ENV EM ENERPLANENPEP ETA- MACRO GEM-E3ME GLOBAL 2100, GREEN. 12RT HOVA LEAP MADE MARKALMARKAL- MACRO MARTES MEDEEMESAP

184 Sustainable Urban Energy: A Sourcebook for AsiaMESSAGE MIDASMODEST NEWAGEPLANET POLESPRIME SAFIRE SEESAM TEESE TIMES WASP IIASA EUIKP16IER IER EUEU EU AaI-U17TERI18ETSAP19, IEA IAEA, US- DOE Energy Supply & Energy Sys- tem Model Energy Supply & Energy Sys- tem Model Energy System Optimization Model Energy- Economic Model Energy Supply & Energy Sys- tem Model Energy Supply & Energy Sys- tem Model Energy- Economic Model T echnology Assessment Model Modular Planning Instrument Modular Planning Instrument Energy Supply & Energy Sys- tem Model Electricity Supply Model Optimization model for Energy Supply System A Modular Simulation Model Minimization of Capital and Operation costs of energy supply and demand side manage-ment Quasi dynamic model with hybrid represen- tation ( bottom up and top down) of the technologies of the industry sector Long term energy system simulation Pr ospective Outlook on Long term Energy Systems, a simulation model A Computable Price Driven Partial Equilibri- um model of the energy system and markets for Europe Strategic Assessment Framework for the Implementation of Rational Energy, a simula- tion model for heat and power supply at the local and regional level for European countries The sustainable energy systems analysis model for energy systems planning at local and regional scale TERI Energy Economy Simulation and Evalu- ation Model The Integrated MARKAL EFOM system and optimization model that produces least cost solutions; it is intended to replace MARKAL which has its origin in the late 1970s and no longer meets modern requirements and pos- sibilities of up-to-date software engineering. We n Automatic System Planning, an optimi- zation model 1 United States Department of Energy 2 International Institutes for Applied Systems Analysis, Laxenburg, Austria 3 International Atomic Energy Agency 4. European Union 5. Gesellschaft fur Technische Zusammenarbeit mbH, Germany6. United Nations, Department of Technical Cooperation for Development 7. Electric Power research Institute, Palo Alto, California, USA 8. Organization for Economic Cooperation and Development, Paris, France. 9. Projektinniktad Dorskning och utveckling-PROFU, Goteborg, Sweden 10. Stockholm Environmental Institute, Boston 11. Institut fur Kernenergetik und Energiesysteme, University of Stuttgart, Germany 12. Energy Technology System Analysis Project 13. Brrokhaven national laboratory 14. Institut Economique et Juridique de l222 Energie, France 15. Institut fur Energiewirtschaft und rationelle Energianwendung, University of Stuttgart, Germany 16. IKP Energy System Institute of Technology, Linkoping, Sweden 17 Aaborg University, Denmark 18. The Energy and Resources Institute, India 19. Energy Technology Systems Analysis Programme, Italy

185 Sustainable Urban Energy: A Sourcebook for Asia 08. Policy Directions and Possible Actions Areas Guidelines and Policy Direction Possible Actions and ToolsPromote application of systems or holistic approach in infrastructure development. þ'¢037 Consider development and use of national strategic infrastructure development plan. þ'¢037 Disseminate the information on the importance and good prac- tices of eco-efficiency in infra- structure development. þ'¢037 Establish a network for capacity-building of sustainable infrastruc- ture development in the region. þ'¢037 Develop guidelines for achieving eco-efficient infrastructure devel- opment in the region. þ'¢037 Propose methodologies to im- prove eco-efficient infrastructure. þ'¢037 Develop eco-efficient infrastruc-ture according to economic, physical/topographical, and demographic conditions. þ'¢037 Integrate development sectors such as transport and land use systems. þ'¢037 Improve the quality of infrastruc- ture services. þ'¢037 - Integrate infrastructure development plan using eco- efficient indicators. - Apply Asset Management and Multi-criteria Analysis. - Develop national sustainable infrastructure plan. - Use of Life Cycle Assessment and Strategic Environ- mental Assessment. - Involve decision makers, planners, academics, etc. - Implement pilot projects based on good practices. - Research covering good practices, indicators, and criteria. - Training focusing on planning, design, and evaluation. - Use of policy tools and strategies that are appropriate to different sectors and conditions. - Benchmarking and/or verification programme. - Use of available data and develop required data base. - Develop and implement pilot projects based on good practices. - Target exchange programme. - Apply at city or subregional level. - Use of technologies and improved management. - Applying eco-efficient materials to be used in construc- tion and maintenance of infrastructure. - Applying successful business models in service provid- ing organizations. Capacity building & awareness - structure sectors

186 Sustainable Urban Energy: A Sourcebook for AsiaStakeholder participation Improve implementation, monitor - ing and evaluation of infrastructure projects. þ'¢037 Increase the use of public trans- port and low energy-consumption vehicles. þ'¢037 Develop methodology to estimate traffic congestion, environmental and social costs. þ'¢037 Governments and policy makers look at areas in relation to other stakeholders to achieve sustainable infrastructure develop-ment. þ'¢037 Integrate capacity-building and technical support activities to en- hance partnerships among sectors and stakeholders. Involve civil society in formulating government policies and major actions. þ'¢037 Education and awareness on adopting sustainable management practices. þ'¢037 Promote dialogue, consultation and consensus building among stakeholders. þ'¢037 Improve environmental manage- ment capacities of local authorities. þ'¢037 Governments can be prepared to gradually shift their role from principal financier and operator to overseer and regulator. þ'¢037 Promote the development of eco-technology and environmental industry. - Use of Environmental Assessment (EA) and Environ- mental Management System (EMS). - Investment of new rail lines and new bus system such as BRT. - Provision of facilities to promote non-motorized vehicles and integration with transit. - Apply social cost-benefit analysis. - Develop and maintain required databases. - Use of innovative financing and economic instruments. - Country and regional workshops to share good practices. - Apply good practices from the private sector. - Target counterpart exchanges. - Use of community and participation techniques. - Information library and websites. - Information, education and communication (IEC) campaign. - Publication of good practices and research results. - Participation of stakeholders including local authorities, citizens, local organizations, NGOs and private enterprises. - Capacity-building and human resources development. - Enhancing technical and financial capacities. - Use of public-private partnership. - Development of regulatory framework and guidelines. - Consider the use of economic instruments. - Provide research funds. Adapted from: UN, 2007

187 Sustainable Urban Energy: A Sourcebook for Asia Existing condition Future resourceneeds Transport agenda Sustainabil-ity Prospects&ambitionDevelop into a bus city If good prospects - develop into a transit city adopting the smart growth para- digm Relatively affluent; substantial resources; living with congestion Very good prospects 227continua- tionof policies Modest Moderate, with private sector inter - est Substantial, with signifi- cant private sector investment Substantial finance and capacity High High Moderate 223living with con- gestion224 Sustain- able - Development of a bus system- Traffic management - Parking control, mainly in the centre. Road maintenance, complete secondary road network and new development roads in fringe areas - Maintain non motorized vehicular facilities. Bus priorities -> bus ways -> bus road transit - Parking policy -> road pricing - Traffic management and control strength- ened - Strategy circular and development roads, sec - ondary roads, and removal of bottlenecks - Progressive private sector development- Smart growth, transit-oriented development encouraged - Grade-separated expressways- Metro networks - Road investment to complete hierarchy (secondary mainly) and to guide future city growth - Transit-oriented development (retro-fitted)- Integration of transport systems - Preserve and enhance non-motored vehicular and pedestrian facilities - Sophisticated traffic restraint and road man- agement, using technological developments - Investment in mass rapid transit (metro) and public transport integration - New road investment to ensure congestion remains controlled - Private sector participation, including out- sourcing Non-motor - low income; modest re- source base modest in- come; modest resource base - the Bangkok syndrome moderate/High income 09. Designing the Future of Transportation in CitiesAdapted from: ADB, 2007

188 Sustainable Urban Energy: A Sourcebook for Asia 10. Impact of Policies on Sustainability and Cost Policy Instrument Energy Sustain-ability Cost -ness Special conditions High Low to Medium Medium to High Medium HighLow to Medium High Medium Can be effectively used to demonstrate new technolo- gies and practices. Mandatory have higher potential than voluntary ones. Factors for success: strong label- ling backing and continuous improvements with new energy efficiency measures, short term incentives to transform markets Successful only when combined with other tools and when there is price elasticity. Rebates or tax reductions however have a higher rate of success than just tax. Mandatory are better. Transaction costs can be high. Institutional structures needed. Expertise in the field will need to be established and well oiled with chang- ing scenarios. Periodical monitoring and updating for relevance is essential. Should be combined with education, awareness building, capacity building, etc. Should be combined with financial or other perceived incentives with a threat of regulation. Demand Pull Indirect Price Support Technical Standards/ Waste Management (For success, major strengths & limitations, co-benefits) 11. Information and Support www.unep.org UNEP aims to provide leadership and encourage partnership in caring for the environment by inspiring, informing, and en-abling nations and peoples to improve their quality of life with-out compromising that of future generations. UNEP-supported initiatives of particular relevance to cities and climate change include the following:- Sustainable Buildings and Construction Initiative (SBCI)www.unepsbci.org

189 Sustainable Urban Energy: A Sourcebook for Asia- Partnership for Clean Fuels and Vehicles (PCFV) www.unep. org/pcfv - Climate Neutral Network (CN Net) www.unep.org/climateneu- tral - Road Design and Finance for Safety, Sustainability, and Acces- sibility www.unep.org/urban_environment/NMT_Roads www.unhabitat.org UN-Habitat222s mandate is to promote socially and environmen- tally sustainable human settlements development and the achievement of adequate shelter for all. Several initiatives ad-dress the role of cities and climate change:- Sustainable Urban Development Network (SUD-Net) www.unhabitat.org/sudnet - Cities and Climate Change Initiative (CCCI)- Sustainable Cities Programme (SCP) www.unhabitat.org/scp - Localizing Agenda 21 (LA21) www.ipcc.ch The IPCC assesses the scientific, technical and socio-economic information on climate change, its potential impacts and op-tions for adaptation and mitigation. 4. The World Bank www.worldbank.org/climatechange The World Bank incorporates considerations of climate change into all of its development operations. þ www.gefweb.org The GEF supports activities that protect the global environment, including efforts to combat climate change. It is also the United Nations body that operates the Least Developed Countries Fund, Special Climate Change Fund, and a potential futureAdaptation Fund under the United Nations Framework Conven-

190 Sustainable Urban Energy: A Sourcebook for Asiation on Climate Change. 6. Cities Alliance www.citiesalliance.org The Cities Alliance is a global partnership for urban poverty reduction and the promotion of the role of cities in sustainable development. The Cities Alliance prioritizes support to cities, local authorities, associations of local authorities and/or national governments that are committed to:- Improving their cities, and local governance, for all residents;- Adopting a long-term, comprehensive and inclusive approach to urban development; - Implementing those reforms necessary to effect systemic change, and to achieve delivery at scale; and - Decentralizing resources to empower local government þ 12. Strategies to Pick up from Ini- tiatives Around the World www.iclei.org ICLEI - is an association of over 1220 local government mem- bers who are committed to sustainable development. The members are from 70 different countries and represent more than 569,885,000 people. ICLEI provides technical consulting, training, and information services to build capacity, share knowledge, and support local government in the implementation of sustainable development at the local level. ICLEI222s basic premise is that locally designed initiatives can provide an effective and cost-efficient way to achieve local, national, and global sustainability objectives. 2. C40 Cities www.live.c40cities.org þ The C40 Cities Climate Leadership Group (C40) is a network of large and engaged cities from around the world committed to

191 Sustainable Urban Energy: A Sourcebook for Asiaimplementing meaningful and sustainable climate-related ac- tions locally that will help address climate change globally. The organization222s global field staff works with city governments, supported by technical experts across a range of programme areas. 3. The Aalborg Charter www.sustainable-cities.eu þ The charter helped prepare a local action plan. Over 200 local authorities signed it. They committed to create a sustainable local action plan. Many activities were initiated towards this, including publication of guidance manual for local planning, training courses, help with networking and creation of data-bases on good practices. 4. Global City Indicators www.cityindicators.org The Global City Indicators Facility provides an established set of city indicators with a globally standardized methodology that allows for global comparability of city performance and knowl-edge sharing. This website serves all cities that become mem-bers to measure and report on a core set of indicators through this web-based relational database. www.isci-cities.org The International Solar Cities Initiative was created for sustain- able action in urban energy management worldwide. It does this through partnership between cities and researchers in-volved in climate research, renewable energy systems and urban design. þ www.cdia.asia þ CDIA is a regional initiative established in 2007 by the Asian Development Bank and the Government of Germany, with ad-ditional core funding support of the governments of Sweden, Austria and Spain and the Shanghai Municipal Government. The Initiative provides assistance to medium-sized Asian cities to bridge the gap between their development plans and the

192 Sustainable Urban Energy: A Sourcebook for Asiaimplementation of their infrastructure investments. CDIA uses a demand driven approach to support the identification and development of urban investment projects in the framework of existing city development plans that emphasize environmental sustainability, pro-poor development, good governance, and climate change. To facilitate these initiatives at city level, CDIA provides a range of international and domestic expertise to cities that can include support for the preparation of pre-feasibility studies for high priority infrastructure investment projects as one of several ele-ments. www.sutp.org þ SUTP Asia is a partnership between the Deutsche Gesellschaft f374r Internationale Zusammenarbeit (GIZ), the Bangkok Metro-politan Administration (BMA), CITYNET and the United Na-tions Economic and Social Commission for Asia and the Pacific (UNESCAP). It aims to help developing world cities achieve their sustainable transport goals, through the dissemination of infor - mation about international experience, policy advice, training and capacity building and targeted work on sustainable trans-port projects within cities. þ www.ase.org þ The Alliance to Save Energy was established in 1977 as a non-profit coalition of prominent business, government, envi-ronmental, and consumer leaders who promote the efficient and clean use of energy worldwide to benefit consumers, the environment and economic growth. The Alliance supports energy efficiency as a cost-effective energy resource under exist-ing market conditions and advocates energy-efficiency policies that minimize costs to all sectors of society, including industry, and that lessen greenhouse gas emissions and their impact on the global climate. ASE demonstrates the cost-effectiveness of energy efficiency under market conditions, while striving to im-prove those conditions by encouraging investment in the most cost-effective energy resources.

193 Sustainable Urban Energy: A Sourcebook for Asia þ www.kitakyushu.iges.or.jp þ This was formed between members from 61 cities in 18 coun- tries in the Asia-Pacific region. It holds an important role in fostering the capacity building of local staff. Many pilot projects are conducted and there is a healthy interchange of experience and information amongst member cities. The Network outlines eight of its functions as follows:- Enabling, conceptualising and implementing of plans with indicators. - Periodical monitoring against quantitative indicators.- Dissemination of information among members.- Offering a platform for the transfer of technology.- Networking for financial support.- Capacity-building of staff.- Enabling environmental education through student exchang- es. - Enabling private enterprises to participate in infrastructural de - velopment and environmental quality enhancement program.

194 Sustainable Urban Energy: A Sourcebook for Asia 13. Training ActivitiesTraining activity for Chapter 1: Energy is all Per- vasive þ Theatre games- Ice breaker sessions and introduction to the course- Introduction round with participants. - What does each hope to learn from the workshop Objective:To make participants understand the general trends of urbaniza-tion in the world and the characteristics of urbanization in Asia Medium: Presentation and group discussion Activity: A group discussion could be started based on the memories of participants on how their hometown/city has developed since their childhood. What has changed? How did it change? What got lost? What has improved? Major points will be highlighted on a flipchart. The group discussion can be rounded up with a presentation on urbanization in Asia and the World. Objective:Cities are huge consumers of Energy. Energy is all pervasive. Participants will get to understand the energy needs of cities. Medium: Video, presentation and reflection Activity: Videos and a presentation will highlight the energy needs of cities and the challenges associated with it. The session will con-clude with a question and answer session and some time will be allocated for a collective reflection process.

195 Sustainable Urban Energy: A Sourcebook for Asia Objective:To activate the information gained in the previous session. Medium: Visit of a local town Activity: Trip to a local town. Participants will use their information from the previous sessions and reflect on the apparent developments in a nearby town. The session ends with an informal sharing of what has been observed.Training activity for Chapter 2: Cities hold the keys to Energy Sustainability þ Objective: To make participants understand the importance of energy conservation and energy efficiency interventions. Medium: Presentation, video, group discussionActivity:Audio files circulated amongst groups of participants. These would be in the form of snippets of news, video or audio files, all related to urban energy crisis. Each group would be given a specific set of information:Group 1: Power generation, power cuts, etc.Group 2: Traffic congestion, fuel prices, air pollutionGroup 3: Industry, rising costs of raw materials, energy, etc. Group 4: food security, food prices, food waste Participants in each group will present their solutions for the en- ergy crisis. The facilitator then introduces the concept of energy conservation and efficiency. Objective:To make participants understand the potential of producing energy and other energy related resources themselves.

196 Sustainable Urban Energy: A Sourcebook for AsiaMedium: Group discussion, brainstorming Activity: Starts with a discussion on consumption patterns and then con-trast this with the concept of prosumption. In a group session, participants will brainstorm on potential prosumption areas, and list vision, challenges and solutions on a flip chart. The facilitator will conclude the session with a few examples from the sourcebook. Example: Renewable Energy Vision þ Challenges þ Solutions þ Objective:Understanding the value of a circular economy Medium: Video, presentation, individual concept development Activity: The facilitator introduces the concept of the circular economy, which mimics nature222s eco-system along with a few examples. Participants are than asked to come up with one example for implementing this model in their city. A video that inspires will close the session.Lack of systemic approach will be handled in this session. In spite of efforts at planning, why do policy-makers often fail? What do they lack in their approach? Choose 221the best Mohammad Bin Tughlaq?222 Each group would be given a card having issues in a particular city related to energy management like increasing private vehicle ownership, increasing demand for electricity, increasing load shedding, in- creasing the divide between the energy used between the rich and the poor and increase in domestic consumption of energy. Along with a description and a set of clue cards that have infor - mation of some ideas of solutions promoted by imaginary city leaders under relevant situation would also be given. The clues would contain both sensible and bizarre solutions. For example, increasing private ownership could have the clues that would be as follows:

197 Sustainable Urban Energy: A Sourcebook for Asia- Build multi-storeyed flyovers - Lay regulations to cut down number of cars plying on the road at any given time- Introduce heavy emission taxes and increase cost of private vehicles- Build better public transport systems- Remove parks and fill up lakes to build more roads Participants will have to choose the most bizarre non-systemic approach. They will then have to build a case on this approach and each group would present their cases with imaginary situ- ations and stories with figures, numbers and characters to the others and to a panel of judges. The most non-systemic group will get the prestigious title of the ruler from the past. Objective:Make participants aware of the nexus between Urban Planning and Urban Transport systems. To introduce potential solutions to reduce energy consumption in the transport sector. Medium: Game of ChanceActivity:The previous session involved the bloomers leaders could make. This session would involve intelligent governance. Each group would be given a sheet containing issues in urban energy. Each issue would have multiple choices as answers carrying points.For example, one of the issues could be low supply of fuel for electricity in an island country. The choices as answers could be as follows:- Import fuel from neighbouring country, which is rich in fuel mining (Marks: -100 points)- Resort to wind energy. (Marks: 100 points)- Introduce DSM programmes and recover energy through poly- generation in industries (Marks: 200 points)- Allow citizens to cope by themselves (Marks: -50 points) The participants would be given a single dice with numbers from 1-6. Any participant can start the game and the rounds can go in a clockwise manner. The participant rolls the dice to decide the fate of the answer luck would choose for him/her.

198 Sustainable Urban Energy: A Sourcebook for AsiaThe points collected corresponding to the answer would be added to the group222s collective points. Finally the group that gains the most points would be the winner.Training activity for Chapter 3: Best practices þ Objective:To make participants understand closed loop systems and good practices within energy consuming sectors. Medium: Card activity Activity: The trainer could briefly explain about closed loop systems and the good and bad practices in the various sectors. The activ-ity using cards could follow this. Each group will be given the same set of cards. The cards would form 2 categories. One set of heading cards and one set of playing cards. The headings would include,1. Closed loop within individual buildings 2. Closed loop within neighbourhood3. Closed loop within locality4. Closed loop within the city5. Good practices in building sector6. Bad practices in building sector7. Good practices in transport sector8. Bad practices in transport sector9. Good practices in energy production10. Bad practices in energy production11. Good practices in appliance designing12. Bad practices in appliance designing The other set of cards would include systems that could go under any of these categories, which can be picked up from chapter 3. For example one card could have the phrase 223wet waste224. This would fall under the 223closed loop within individual buildings224 category. Managing wet waste within buildings that produce them would remove the strain on local governments of picking up, segregating and transporting wet waste of the whole city that form as much as 60% of all household waste. There could be at least 2-6 such cards under each category.

199 Sustainable Urban Energy: A Sourcebook for AsiaParticipants in each group take turns to form clusters of these cards under various categories, one at a time, one by one. The chance passes on to the next participant and the rounds go on till all cards are used up. Sorting should happen without discussion. Then the participants can take around 3-4 rounds to rearrange the cards if they see fit, one by one changing what their predecessors had placed. After a couple of such rounds, the facilitator will now instruct the participants that they can discuss and again go through the rounds to sort cards. Once everyone is satisfied with the sorting, each team would present the sorting to others. The facilitator then performs the sorting on board for all to see, with consensus from groups to arrive at the correct sorting. Objective:Present best practices in the field of energy. Medium: Presentation, video Activity: Use of renewable energy systems and energy efficiency tech-nologies to solve energy problems will be the focus of this ses-sion. Participants will break up into groups; each group will be given a case study of a city and will be asked to find solutions to solve issues related to energy. Each group would prepare a one-page poster that documents solutions referring to policy interventions, financial mechanism, market transformation and awareness building. Participants will give each other feedback and suggestions. To round up the session the whole group will try to find key points and recommendations for implementing sustainable energy in urban Asia. Objective: To give participants an insight into small-scale renewable energy systems. Medium: Site Visits and interaction with experts Activity: Participants will be taken to installations of renewable energy

200 Sustainable Urban Energy: A Sourcebook for Asiasystems (solar PV and wind turbines). They will interact with experts about capacity, system design and challenges regarding finances and grid metering. Objective:To understand the importance of awareness campaigns and education Medium: Video, presentation, discussion Activity: Any policy intervention needs to have support from the people. In this session successful awareness campaigns and training initiatives are introduced. Participants will share awareness campaigns and educational with a focus on sustainability from their city, region and coun-try and narrate to which extent it was successful or not. The group then picks an issue that can be targeted by an awareness campaign, a matrix of stakeholders is listed and each participant takes on the role of a stakeholder, representing a specific inter - est and sensitivity/insensitivity to a subject.Training activity for Chapter 4: Policymaking þ Objective:To make policy makers understand areas where they can help Medium: Analysis, assimilation and presentation Activity: Groups would be asked to discuss amongst themselves and come up with various areas that they feel they can influence to bring about urban energy sustainability. They should also be able to state the kind of impact they could induce. Each team member should be able to help others come up with better ideas and once discussions are over, each group could present their analysis to the others. The facilitator could fill in gaps and conclude that energy sustainability can be enhanced through better local governance.

201 Sustainable Urban Energy: A Sourcebook for Asia Objective: To make participants understand appropriate revenue models of energy sustainability. Medium: Auction activity Activity: What would participants bet on as the most successful solu-tions for generating revenue? A team of auctioneers will be chosen and the rest of the participants would be bidders. For a problem read out by an auctioneer, a set of solutions would be read out. For each set of solutions there would be only one correct solution. Participants will make a choice and bid (in small money) for it. There can be other bids for other solutions if some other participant thinks that some other solution is right. The auctioneer can encourage the bidding and the high-est bidder will have to pay the money and if his bidding object coincides with the correct answer, he would be given twice his money back. Concepts of correct revenue models will be brought out in this manner. Objective:This module will enable participants to see the value of inte-grated energy planning. Medium: Problem solving Activity: Participants form groups and are given problems to solve. The groups are divided into technicians, social engineers, adminis-trators and other experts. Each team will be given 221expert clues222 to the problem pertaining to their core area of competency, which they will need to discuss and develop into better solu-tions. In the second round, participants are reorganized into mixed teams with each member representing a different group and asked to synthesize their earlier ideas together. Each new group will present their findings to the rest of the group and the facilitator could conclude with final touches and with closing

202 Sustainable Urban Energy: A Sourcebook for Asiastatements on importance of integrated energy planning which would have anyway happened with integration of so many thoughts during this activity. The facilitator closes the workshop with a presentation of key concepts that need filling in. The session can end with a com-mitment for networking and mutual support of participants.

203 Sustainable Urban Energy: A Sourcebook for Asia

204 Sustainable Urban Energy: A Sourcebook for Asia SUSTAINABLE URBAN ENERGYA Sourcebook for Asia